Reduced liver insulin-like growth factor-I gene expression in young zinc-deprived rats is associated with a decrease in liver growth hormone (GH) receptors and serum GH-binding protein

1995 ◽  
Vol 144 (3) ◽  
pp. 449-456 ◽  
Author(s):  
N X Ninh ◽  
J-P Thissen ◽  
D Maiter ◽  
E Adam ◽  
N Mulumba ◽  
...  

Abstract Zinc depletion attenuates growth and decreases circulating IGF-I. To investigate the mechanisms responsible for the IGF-I decline, we determined the effects of dietary zinc (Zn) deficiency on body and organ growth, serum IGF-I, serum GH-binding protein (GHBP), liver GH receptors and liver expression of their corresponding gene. After 1 week of adaptation to a normal zinc diet, a zinc-deficient diet (ZD; Zn, 0 p.p.m.) or a zinc-normal diet (CTR; Zn, 75 p.p.m.) was available ad libitum to 4-week-old Wistar rats for 4 weeks. Pair-fed animals (PF) received the zinc-normal diet in the same absolute amount as that consumed the day before by the ZD group. The food intake of ZD and PF rats was reduced by 32% (P<0·001) compared with the CTR group. Zinc depletion specifically reduced body weight gain (−22%, P<0·05), serum IGF-I concentrations (−52%, P<0·001), hepatic GH receptors (−28%; P<0·05) and serum GHBP levels (−51%; P<0·05), compared with the PF group. GH concentrations were reduced in ZD animals compared with CTR rats (P<0·01). The caloric restriction of PF animals also decreased body weight gain (−50%, P<0·001), serum IGF-I concentrations (−21%, P<0·05), liver GH receptors (−38%, P<0·001) and serum GHBP levels (−38%, P<0·01), when compared with the CTR group. Both ZD and PF groups had reduced liver IGF-I and GH receptor/GHBP mRNA levels in comparison with the CTR group (P<0·01). However, only liver IGF-I mRNA levels were specifically reduced by zinc deficiency (ZD vs PF rats; P<0·05). Our observations suggest that beside the decline of GH secretion, decreased hepatic GH receptors and/or GHBP concentrations might be responsible for the decline of circulating IGF-I in ZD animals. Journal of Endocrinology (1995) 144, 449–456

2006 ◽  
Vol 189 (1) ◽  
pp. 147-154 ◽  
Author(s):  
G Tachas ◽  
S Lofthouse ◽  
C J Wraight ◽  
B F Baker ◽  
N B Sioufi ◽  
...  

Diabetic retinopathy and acromegaly are diseases associated with excess action of GH and its effector IGF-I, and there is a need for improved therapies. We have designed an optimised 2′-O-(2-methoxyethyl)-modified phosphorothioate oligodeoxynucleotide, ATL 227446, and demonstrated its ability to suppress GH receptor mRNA in vitro. Subcutaneous injections of ATL 227446 reduced GH receptor mRNA levels, GH binding activity and serum IGF-I levels in mice after seven days of dosing. The reduction in serum IGF-I could be sustained for over ten weeks of dosing at therapeutically relevant levels, during which there was also a significant decrease in body weight gain in antisense-treated mice relative to saline and mismatch control-treated mice. The findings indicate that administration of an antisense oligonucleotide to the GH receptor may be applicable to human diseases in which suppression of GH action provides therapeutic benefit.


1998 ◽  
pp. 109-117 ◽  
Author(s):  
MY Donath ◽  
W Zierhut ◽  
MA Gosteli-Peter ◽  
C Hauri ◽  
ER Froesch ◽  
...  

Adult rat cardiomyocytes in long-term culture reexpress several fetal cardiac proteins which also reappear during overload heart hypertrophy in vivo. IGF-I decreases reexpression of some of these proteins and stimulates myofibrillogenesis. IGF-I might therefore contribute to enhancing readaptation of the heart to overload. In order to test this hypothesis, hypertension was induced in male Wistar Kyoto rats by constriction of the left renal artery, and an infusion of 500 microg/day of recombinant human IGF-I (rhIGF-I) or vehicle was started after the operation via intraabdominally implanted osmotic minipumps. In the vehicle-treated hypertensive animals body weight gain was reduced after 3, 7 and 14 days, whereas rhIGF-I-treated hypertensive animals continued to gain weight like sham-operated animals. Left ventricular weight and the left, but not the right ventricle/body weight ratio increased more in rhIGF-I- than in vehicle-infused rats. Left ventricular IGF-I mRNA levels remained unchanged after renal clipping in both vehicle- and rhIGF-I-treated rats. However, beta-myosin heavy chain (MHC) mRNA in the left ventricle was 6- to 10-fold increased in clipped controls during the whole postoperative period, and rhIGF-I reduced this increase by more than 50% on days 7 and 14. On the first postoperative day, rhIGF-I prevented the decrease (50%) of alpha-MHC mRNA and the increase (2.5-fold of atrial natriuretic factor mRNA in the left ventricle. Renal clipping did not alter cardiac alpha-actin, but enhanced skeletal alpha-actin mRNA expression in the left ventricle up to 2.5-fold. However, both mRNAs were unaffected by rhIGF-I treatment. Restoration of body weight gain and stimulation of left ventricular cardiac weight by rhIGF-I as well as partial reversion of hypertension-induced changes in cardiac protein expression may reflect beneficial effects contributing to enhance readaptation of the heart to overload.


1997 ◽  
Vol 152 (2) ◽  
pp. 303-316 ◽  
Author(s):  
M H Monaco ◽  
S M Donovan

Abstract The role of somatogenic and lactogenic hormones in the adaptative mechanisms which occur in response to nutrient restriction during lactation is unknown. To characterize the effect of food restriction during lactation on serum IGF-I, GH and prolactin concentrations and serum IGF-binding protein (IGFBP) profiles, lactating dams had free access to food (control) or were restricted to 60% of control intake during pregnancy and lactation (RPL) or only during lactation (RL). Serum, milk and mammary gland samples were collected throughout lactation. RL dams lost body weight, control dams gained weight, while RPL dams maintained body weight during lactation. By day 20, body and mammary gland weights of RL and RPL dams did not differ and were lower than control (P<0·05). Serum IGF-I concentrations in restricted groups were lower than control (P<0·05), however, hepatic expression of IGF-I mRNA did not differ between groups in early (day 1) or mid-lactation (day 8) and was increased on day 20 in RL dams compared with RPL or control. These data suggest that serum IGF-I and hepatic IGF-I mRNA expression are not co-ordinately regulated in the food-restricted lactating rat. In early lactation, serum IGFBP-3 was lower in RPL dams than control (P<0·05), whereas IGFBP-1 and -2 were increased in RL and RPL dams in late lactation compared with control. The decrease in IGFBP-3 and increase in lower molecular weight IGFBP may have contributed to the reduction in serum IGF-I by increasing IGF-I clearance from the circulation. Serum GH and prolactin were measured in samples obtained between 0900 and 1200 h. Serum GH did not differ with the exception of an increase on day 1 in control relative to RPL dams and on day 20 in RL dams relative to RPL and control. Serum prolactin was higher in the RL dams than controls on day 4. In summary, food restriction during pregnancy and lactation or solely during lactation results in similar reductions in serum IGF-I and alterations in serum IGFBP despite differences in body weight responses to food restriction during lactation. Journal of Endocrinology (1997) 152, 303–316


2000 ◽  
Vol 165 (3) ◽  
pp. 537-544 ◽  
Author(s):  
I Ibanez De Caceres ◽  
MA Villanua ◽  
L Soto ◽  
AI Martin ◽  
A Lopez-Calderon

Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. We have previously reported that adjuvant-induced arthritis in rats results in a decrease in body weight gain, pituitary GH mRNA, circulating GH and IGF-I together with an increase in serum IGF-binding proteins (IGFBPs). The aim of this study was to analyze the role of GH in the decrease in body weight and in the alterations in the IGF-I system observed in chronic inflammation. Male Wistar rats were injected with complete Freund's adjuvant and 16 days later arthritic rats were injected daily with recombinant human GH (rhGH) (3 IU/kg s.c.) for 8 days; control rats received 250 microl saline. Arthritis significantly decreased body weight gain and serum IGF-I. These decreases were not due to the reduced food intake, since in pair-fed rats they were not observed. Furthermore, administration of rhGH to arthritic rats increased body weight gain without modifying food intake. To further investigate the effect of GH administration, 14 days after adjuvant injection both control and arthritic rats were treated with 0, 1.5, 3 or 6 IU/kg of rhGH. GH treatment at the dose of 3 and 6 IU/kg significantly increased body weight gain in arthritic rats. GH administration, at the higher dose of 6 IU/kg, increased hepatic and serum concentrations of IGF-I in both control and arthritic rats. In control rats, rhGH at the three doses assayed increased circulating IGFBP-3. GH treatment in arthritic rats decreased IGFBP-1 and -2, and did not modify IGFBP-4. GH treatment at the dose of 3 IU/kg also decreased circulating IGFBP-3 in arthritic rats. These data suggest that GH treatment can ameliorate the catabolism observed in adjuvant-induced arthritis, an effect mediated, at least in part, by modifications in the circulating IGFBPs.


1995 ◽  
Vol 146 (2) ◽  
pp. 247-253 ◽  
Author(s):  
M A Conlon ◽  
F M Tomas ◽  
P C Owens ◽  
J C Wallace ◽  
G S Howarth ◽  
...  

Abstract We have tested whether an animal with substantial amounts of both IGF-I and IGF-II in circulation, such as the guinea pig, would respond to chronic IGF infusion in the same manner as the adult rat, which has negligible amounts of IGF-II in blood. Female guinea pigs of 350 g body weight were continuously infused for 7 days with recombinant guinea pig IGF-I or -II (120 or 360 μg/day) or long R3 IGF-I (LR3IGF-I) (120 μg/day), an analogue which has much reduced affinities for IGF binding proteins. IGF-I or IGF-II infusion led to substantial increases in plasma IGF-I or IGF-II respectively in comparison with vehicle-infused animals. Nevertheless, body weight gain, feed intake, feed conversion efficiency and carcass composition were not significantly affected by any treatment (significance was deemed to be P<0·05). Amongst the tissues examined only the fractional weight (g/kg body weight) of the adrenals was increased, and that only by the higher dose (360 μg/day) of IGF-I. However, the fractional weight of adrenals, gut, kidneys and spleen were significantly increased by LR3IGF-I, but again overall growth was not stimulated. A possible explanation for the lack of IGF-I effects is that total circulating IGF concentrations were not increased by these treatments. IGF-II significantly raised total IGF concentrations at the higher dose only. Plasma IGF-I was reduced by IGF-II infusion, as was plasma IGF-II by IGF-I infusion. LR3IGF-I treatment lowered both plasma IGF-I and IGF-II concentrations, a response probably related to a reduction in total plasma IGF binding protein (IGFBP), especially IGFBP-3, concentrations. We conclude that although the guinea pig is responsive to IGF treatment, the effects differ markedly from those elicited in rats. Journal of Endocrinology (1995) 146, 247–253


1989 ◽  
Vol 122 (1) ◽  
pp. 79-86 ◽  
Author(s):  
D. J. Flint ◽  
M. J. Gardner

ABSTRACT Treatment of rats for 24 h on day 2, 10 or 20 of age with a specific antiserum to rGH (anti-(rGH)), GH, bromocriptine (CB-154) or prolactin failed to influence body weight gain or serum concentrations of insulin-like growth factor-I (IGF-I). On day 28 of age, however, anti-(rGH) completely inhibited body weight gain and markedly reduced circulating IGF-I concentrations, effects which were completely prevented by exogenous ovine GH (oGH). When administered to control rats on day 28 oGH caused supranormal weight gain and serum IGF-I concentrations. These results suggested that GH does not play a significant role in growth or regulation of serum IGF-I until after day 20 of age. By contrast, when anti-(rGH) was given for 4 consecutive days beginning on day 2 of life, body weight gain was reduced within 48 h and remained so until at least 28 days of age. Tail length was also significantly reduced. The effect was due to inhibition of GH effects since serum GH concentrations were low and exogenous GH prevented the effect. Inhibition of growth during the first 14 days of life occurred in the absence of any effect on serum IGF-I although by 21 days of age serum IGF-I was considerably lower than in control rats. The prolonged reduction in growth after treatment has stopped appeared to be due to a cytotoxic effect on the pituitary gland since pituitary weight and GH but not prolactin content were significantly decreased. The data are consistent with the hypothesis that in the neonate GH may be processed in serum so that a proportion of it is not recognized by an antiserum to pituitary GH. It would appear that inhibition of GH secretion reduces growth rate by at least 30–40% up to 14 days of age, 50% by 21 days of age and completely by 28 days. Effects of GH on growth could not be fully explained by regulation of serum IGF-I concentrations. Journal of Endocrinology (1989) 122, 79–86


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chung Shil Kwak ◽  
Mi-Ju Kim ◽  
Sunyeong Park ◽  
In Gyu Kim

Obesity is closely associated with oxidative stress and chronic inflammation leading to related metabolic diseases. Some natural extracts or polyphenols reportedly possess anti-obesity and anti-inflammatory effects as well as antioxidant activity. In this study, we assessed the correlations between the antioxidant, anti-obesity, and anti-inflammatory activities of plant extracts with potent antioxidant activity in diet-induced obese mice. Sprouts of Cedrela sinensis (CS) and Oenothera biennis L. (OB) were selected as the most potent antioxidant plant based on analysis of in vitro antioxidant activity of the extracts of ten different edible plants. C57BL/6 mice were fed with a high-fat diet (HFD) and orally treated with 50% ethanol extract of CS or OB at 50 or 100 mg/kg body weight 5 days a week for 14 weeks. Body weight gain, weight of adipose tissue, adipocyte size, and levels of lipid metabolism, inflammation, and oxidative stress markers were investigated. The CS or OB extract reduced body weight gain, visceral adipose tissue weight, adipocyte size, and plasma leptin levels, and expressions of adipogenic genes (PPARγ and fatty acid synthase) in the adipose tissue and liver of HFD-fed mice. Both extracts also reduced mRNA levels of pro-inflammatory cytokines (IL-6 and TNF-α) and oxidative stress-related genes (heme oxygenase- (HO-) 1 and p40phox). Body weight gain of mice was significantly correlated with visceral adipose tissue weight and adipocyte size. Body weight gain and adipocyte size were significantly correlated with plasma total cholesterol and 8-epi PGF2α levels, mRNA levels of leptin, HO-1, p40phox, and CD-11 in the adipose tissue, and mRNA levels of TNF-α in the adipose tissue and liver. These results suggest that the CS and OB extracts with potent antioxidant activity may inhibit fat deposition in adipose tissue and subsequent inflammation.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2504
Author(s):  
Raquel Urtasun ◽  
Joana Díaz-Gómez ◽  
Miriam Araña ◽  
María José Pajares ◽  
María Oneca ◽  
...  

Obesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1β, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.


2007 ◽  
Vol 292 (6) ◽  
pp. E1656-E1665 ◽  
Author(s):  
Miriam Granado ◽  
Ana I Martín ◽  
Mª Ángeles Villanúa ◽  
Asunción López-Calderón

Chronic arthritis induces cachexia associated with an inhibition of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system and an activation of the E3 ubiquitin-ligating enzymes muscle atrophy F-box (MAFbx) and muscle Ring finger 1 (MuRF1) in the skeletal muscle. The aim of this work was to study the role of cyclooxygenase (COX)-2 in chronic arthritis-induced cachexia. Arthritis was induced in rats by Freund's adjuvant injection, and the effects of two COX inhibitors (indomethacin, a nonspecific inhibitor, and meloxicam, a selective COX-2 inhibitor on pituitary GH and on liver and serum IGF-I levels) were tested. Arthritis decreased body weight gain and GH and liver IGF-I gene expression. In the arthritic rats, both inhibitors, indomethacin and meloxicam, prevented the inhibitory effect of arthritis on body weight gain. Indomethacin and meloxicam administration to arthritic rats increased pituitary GH and liver IGF-I mRNA as well as serum levels of IGF-I. These data suggest that induction of COX-2 during chronic inflammation is involved in the inhibition of the GH-IGF-I axis and in the body weight loss. In the gastrocnemius muscle, arthritis increased the gene expression of tumor necrosis factor (TNF)-α, the E3 ubiquitin-ligating enzymes MAFbx and MuRF1, as well as of IGF-I and IGF-binding protein-5 (IGFBP-5). Inhibition of COX-2 by meloxicam administration increased gastrocnemius weight and decreased MAFbx, MuRF1, TNF-α, and IGFBP-5 gene expression. In summary, our data indicate that chronic arthritis-induced cachexia and muscle wasting are mediated by the COX-2 pathway resulting in a decreased GH-IGF-I secretion and increased expression of MAFbx and MuRF1 mRNA.


Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1066-1071 ◽  
Author(s):  
E. Melián ◽  
B. Velasco ◽  
R. Barrios ◽  
F. Sanchez-Franco

Abstract Genetically obese Zucker rats, like obese humans, have normal or elevated circulating insulin-like growth factor-I (IGF-I) levels in the presence of low GH secretion. Hyperinsulinemia, increased energy status, or other nutritional factors associated with obesity could be responsible for these findings directly by increasing hepatic IGF-I production at the transcriptional or posttranscriptional level. Alternatively, circulating IGF-I could be modulated indirectly by affecting its binding proteins. To further elucidate this point, we quantitated hepatic IGF-I, IGF binding protein-3 (IGFBP-3), and GH receptor messenger RNAs (mRNAs) expression in obese Zucker rats under different serum GH and insulin conditions using lean rats as controls. Eleven-week-old male rats were studied basally (intact) or after hypophysectomy (hx) at 9 weeks. In each condition, animals were killed before or 6 h after one dose of recombinant human GH (1.5 μg/g body weight ip). At this time, in addition to the mRNA expression of the above-mentioned genes, body weight, glycemia, insulinemia, serum GH (rat and human), and serum IGF-I levels were determined. Obese Zucker rats were significantly heavier than controls in all the conditions studied and did not show differences in glycemia. Severely hyperinsulinemic intact obese rats (146.9 ± 14 vs. 46.3 ± 3 μU/ml, P &lt; 0.001) showed compared with intact lean rats significantly lower serum GH (2.39 ± 0.9 vs. 4.98 ± 0.68 ng/ml, P &lt; 0.01), decreased hepatic IGF-I mRNA and IGFBP-3 mRNA accumulation (IGF-Ia: 79 ± 5.9% vs. 100 ± 0.9%, P &lt; 0.05; IGF-Ib: 67 ± 5.5% vs. 100.1 ± 1.9%,P &lt; 0.001; IGFBP-3: 54.7 ± 2.75% vs. 100.5 ± 1.55%, P &lt; 0.001), and similar circulating IGF-I levels (1439 ± 182 vs. 1516 ± 121 ng/ml). Under comparable serum GH levels in GH-treated intact, hx, and GH-treated hx animals, hyperinsulinemia and/or increased body weight present in obese rats were not associated with increased hepatic IGF-I and IGFBP-3 mRNA amount. No differences in GH receptor/GH-binding protein mRNAs were found in any experimental condition. These results suggest that in vivo the imbalance of the serum GH/IGF-I axis present in obesity is primarily due to events distal to the hepatic IGF-I and IGFBP-3 mRNAs expression, which is tightly correlated to GH levels.


Sign in / Sign up

Export Citation Format

Share Document