scholarly journals IGF-I and IGF-I-binding proteins in rats with adjuvant-induced arthritis given recombinant human growth hormone

2000 ◽  
Vol 165 (3) ◽  
pp. 537-544 ◽  
Author(s):  
I Ibanez De Caceres ◽  
MA Villanua ◽  
L Soto ◽  
AI Martin ◽  
A Lopez-Calderon

Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. We have previously reported that adjuvant-induced arthritis in rats results in a decrease in body weight gain, pituitary GH mRNA, circulating GH and IGF-I together with an increase in serum IGF-binding proteins (IGFBPs). The aim of this study was to analyze the role of GH in the decrease in body weight and in the alterations in the IGF-I system observed in chronic inflammation. Male Wistar rats were injected with complete Freund's adjuvant and 16 days later arthritic rats were injected daily with recombinant human GH (rhGH) (3 IU/kg s.c.) for 8 days; control rats received 250 microl saline. Arthritis significantly decreased body weight gain and serum IGF-I. These decreases were not due to the reduced food intake, since in pair-fed rats they were not observed. Furthermore, administration of rhGH to arthritic rats increased body weight gain without modifying food intake. To further investigate the effect of GH administration, 14 days after adjuvant injection both control and arthritic rats were treated with 0, 1.5, 3 or 6 IU/kg of rhGH. GH treatment at the dose of 3 and 6 IU/kg significantly increased body weight gain in arthritic rats. GH administration, at the higher dose of 6 IU/kg, increased hepatic and serum concentrations of IGF-I in both control and arthritic rats. In control rats, rhGH at the three doses assayed increased circulating IGFBP-3. GH treatment in arthritic rats decreased IGFBP-1 and -2, and did not modify IGFBP-4. GH treatment at the dose of 3 IU/kg also decreased circulating IGFBP-3 in arthritic rats. These data suggest that GH treatment can ameliorate the catabolism observed in adjuvant-induced arthritis, an effect mediated, at least in part, by modifications in the circulating IGFBPs.

2002 ◽  
Vol 15 (2) ◽  
pp. 231-244 ◽  
Author(s):  
Yasufumi Furuhata ◽  
Masugi Nishihara ◽  
Michio Takahashi

AbstractGrowth hormone (GH) is an endocrine regulator of glucose and lipid metabolism as well as body growth. GH levels are decreased and a unique pulsatile secretory pattern becomes obvious after puberty particularly in males. Coincidentally with this, males tend to deposit body fat. Experimental and clinical evidence has accumulated that obesity is associated with a decrease in GH levels. A strain of transgenic rats has been generated with severe obesity but normal nose-to-tail length, which has low circulating GH levels without pulsatility (human growth hormone (hGH) transgenic rats). The present review mainly focuses on recent and current work analysing the relationship between the occurrence of obesity and low GH levels and/or the absence of GH pulsatility in this transgenic animal model. This model has elevated blood glucose, non-esterified fatty acid, insulin and leptin levels associated with hyperphagia, suggesting that these rats also carry insulin- and leptin-resistant characteristics. hGH transgenic rats were subjected to a pair-feeding treatment to normalize food intake and chronic GH replacement to normalize GH levels. While the pair-feeding for 8 weeks successfully suppressed body-weight gain, the fat pad : body weight ratio remained very similar to freely-eating control hGH transgenic rats, which indicates the hyperphagia is not the sole contributor to the excess fat accumulation in this model. However, continuous elevation of peripheral hGH levels (approximately 2-fold) for 8 weeks by means of a slow-release vehicle resulted in a significant decrease in the fat mass : body weight ratios by 30 %. This GH treatment altered neither food intake nor body-weight gain. Thus, two characteristic phenotypes observed in the hGH transgenic rats, hyperphagia and obesity, seem to be closely related to GH levels and GH secretory pattern. This relationship might be working in the regulation of changes in seasonal body composition in wild animals.


2010 ◽  
Vol 299 (2) ◽  
pp. R541-R551 ◽  
Author(s):  
María López-Menduiña ◽  
Ana Isabel Martín ◽  
Estíbaliz Castillero ◽  
María Angeles Villanúa ◽  
Asunción López-Calderón

Adjuvant arthritis is an animal model of rheumatoid arthritis that decreases liver and circulating IGF-I as well as skeletal muscle mass. The aim of this work was to elucidate whether IGF-I administration was able to prevent the effect of arthritis on body weight and on two skeletal muscles, gastrocnemius and soleus. On day 4 after adjuvant injection, control and arthritic rats were treated with IGF-I (100 μg/kg sc) two times a day, until day 15 when all rats were killed. Arthritis decreased body weight gain and gastrocnemius weight. In arthritic rats, IGF-I treatment increased body weight gain and gastrocnemius weight, without modifying food intake or the external signs of arthritis. Arthritis increased atrogin-1 and muscle ring finger 1 (MuRF1) gene expression in the gastrocnemius and to a lesser extent in the soleus muscle. IGF-I attenuated the arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius, whereas it did not modify the expression of these genes in the soleus muscle. Arthritis also increased IGF-binding protein (IGBP)-3 and IGFBP-5 gene expression in gastrocnemius and soleus, whereas IGF-I administration decreased IGFBP-3, but not IGFBP-5, gene expression in both muscles. In both groups of arthritic rats and in control rats treated with IGF-I, proliferating cell nuclear antigen and myogenic differentiation proteins were increased in the gastrocnemius. These data suggest that the inhibitory effect of chronic arthritis on skeletal muscle is higher in fast glycolytic than in slow oxidative muscle and that IGF-I administration attenuates this effect and decreases atrogin-1 and IGFBP-3 gene expression.


1991 ◽  
Vol 260 (4) ◽  
pp. E568-E574
Author(s):  
A. Flyvbjerg ◽  
K. D. Jorgensen ◽  
S. M. Marshall ◽  
H. Orskov

We investigated the effect of a somatostatin analogue octreotide (SMS) on the stimulatory effect of recombinant human growth hormone (hGH) on insulin-like growth factor I (IGF-I) generation and growth in hypophysectomized rats. Two weeks after hypophysectomy, treatment was given for 11 days with either saline, SMS (100 micrograms/day), hGH (140 micrograms/day), or hGH plus SMS. Compared with saline-injected controls, hGH stimulated body weight gain [1.1 +/- 0.7 vs. 40.9 +/- 0.8 (SE) g, P less than 0.001] and width of epiphysial cartilage (138.0 +/- 4.5 vs. 356 +/- 3.8 microns, P less than 0.001). Combined treatment with hGH and SMS significantly reduced both body weight gain (29.1 +/- 2.5 g, P less than 0.001) and width of epiphysial cartilage (315.3 +/- 5.8 microns, P less than 0.001) compared with the effects of hGH alone. During 11 days of hGH treatment, serum IGF-I increased from 22 +/- 5 to 1,288 +/- 92 micrograms/l (P less than 0.001) but increased only 40% (513 +/- 71 vs. 1,288 +/- 92 micrograms/l, P less than 0.001) when SMS was given in combination with hGH. In gastrocnemius muscle, heart, and lung, but not in liver, kidney, and brain, SMS suppressed organ weight increase when given both with and without hGH substitution. Thymus and gastrointestinal tract weight were significantly reduced in the group receiving SMS alone and tended to be reduced in the hGH-substituted group given SMS as well. Tissue IGF-I was increased in liver, lung, kidney, and heart with hGH treatment (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2441-2452 ◽  
Author(s):  
Tomokazu Hata ◽  
Noriyuki Miyata ◽  
Shu Takakura ◽  
Kazufumi Yoshihara ◽  
Yasunari Asano ◽  
...  

Abstract Anorexia nervosa (AN) results in gut dysbiosis, but whether the dysbiosis contributes to AN-specific pathologies such as poor weight gain and neuropsychiatric abnormalities remains unclear. To address this, germ-free mice were reconstituted with the microbiota of four patients with restricting-type AN (gAN mice) and four healthy control individuals (gHC mice). The effects of gut microbes on weight gain and behavioral characteristics were examined. Fecal microbial profiles in recipient gnotobiotic mice were clustered with those of the human donors. Compared with gHC mice, gAN mice showed a decrease in body weight gain, concomitant with reduced food intake. Food efficiency ratio (body weight gain/food intake) was also significantly lower in gAN mice than in gHC mice, suggesting that decreased appetite as well as the capacity to convert ingested food to unit of body substance may contribute to poor weight gain. Both anxiety-related behavior measured by open-field tests and compulsive behavior measured by a marble-burying test were increased only in gAN mice but not in gHC mice. Serotonin levels in the brain stem of gAN mice were lower than those in the brain stem of gHC mice. Moreover, the genus Bacteroides showed the highest correlation with the number of buried marbles among all genera identified. Administration of Bacteroides vulgatus reversed compulsive behavior but failed to exert any substantial effect on body weight. Collectively, these results indicate that AN-specific dysbiosis may contribute to both poor weight gain and mental disorders in patients with AN.


2020 ◽  
Author(s):  
Clayton Spada ◽  
Chau Vu ◽  
Iona Raymond ◽  
Warren Tong ◽  
Chia-Lin Chuang ◽  
...  

Abstract Background Bimatoprost negatively regulates adipogenesis in vitro and likely participates in a negative feedback loop on anandamide-induced adipogenesis. Here, we investigate the broader metabolic effects of bimatoprost action in vivo in rats under both normal state and obesity-inducing conditions. Methods Male Sprague Dawley rats were a fed standard chow (SC) diet in conjunction with dermally applied bimatoprost treatment for a period of 9–10 weeks. Body weight gain, energy expenditure, food intake, and hormones associated with satiety were measured. Gastric emptying was also separately evaluated. In obesity-promoting diet studies, rats were fed a cafeteria diet (CAF) and gross weight, fat accumulation in SQ, visceral fat and liver was evaluated together with standard serum chemistry. Results Chronic bimatoprost administration attenuated weight gain in rats fed either standard or obesity-promoting diets over a 9–10 weeks. Bimatoprost increased satiety as measured by decreased food intake, gastric emptying and circulating gut hormone levels. Additionally, SQ and visceral fat mass was distinctly affected by treatment. Bimatoprost increased satiety as measured by decreased food intake, gastric emptying and circulating gut hormone levels. Conclusions These findings suggest that bimatoprost (and possibly prostamide F2α) regulates energy homeostasis through actions on dietary intake. These actions likely counteract the metabolic actions of anandamide through the endocannabinoid system potentially revealing a new pathway that could be exploited for therapeutic development.


2018 ◽  
Vol 20 (1) ◽  
pp. 88 ◽  
Author(s):  
Mehdi Labyb ◽  
Chloé Chrétien ◽  
Aurélie Caillon ◽  
Françoise Rohner-Jeanrenaud ◽  
Jordi Altirriba

Whereas leptin administration only has a negligible effect on the treatment of obesity, it has been demonstrated that its action can be improved by co-administration of leptin and one of its sensitizers. Considering that oxytocin treatment decreases body weight in obese animals and humans, we investigated the effects of oxytocin and leptin cotreatment. First, lean and diet-induced obese (DIO) mice were treated with oxytocin for 2 weeks and we measured the acute leptin response. Second, DIO mice were treated for 2 weeks with saline, oxytocin (50 μg/day), leptin (20 or 40 µg/day) or oxytocin plus leptin. Oxytocin pre-treatment restored a normal acute leptin response, decreasing food intake and body weight gain. Chronic continuous administration of oxytocin or leptin at 40 µg/day decreased body weight in the presence (leptin) or in the absence (oxytocin) of cumulative differences in food intake. Saline or leptin treatment at 20 µg/day had no impact on body weight. Oxytocin and leptin cotreatments had no additional effects compared with single treatments. These results point to the fact that chronic oxytocin treatment improves the acute, but not the chronic leptin response, suggesting that this treatment could be used to improve the short-term satiety effect of leptin.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


Life Sciences ◽  
2007 ◽  
Vol 81 (12) ◽  
pp. 1024-1030 ◽  
Author(s):  
SuJean Choi ◽  
Briana DiSilvio ◽  
JayLynn Unangst ◽  
John D. Fernstrom

1993 ◽  
Vol 264 (6) ◽  
pp. E986-E992 ◽  
Author(s):  
J. C. Byatt ◽  
N. R. Staten ◽  
W. J. Salsgiver ◽  
J. G. Kostelc ◽  
R. J. Collier

Recombinant bovine prolactin (rbPRL) or bovine growth hormone (rbGH) was administered to mature female rats (10/treatment group) by daily subcutaneous injection for 10 days. Doses ranged from 7 to 5,000 micrograms/day (0.03-24 mg/kg body wt). Both rbPRL and rbGH increased body weight gain and food intake, but these parameters were increased at lower doses of rbPRL (7-63 micrograms/day) than rbGH (> 190 micrograms/day). Weight gain and food intake were maximally stimulated by 190 micrograms/day rbPRL, whereas maximal increased weight gain was obtained with the highest dose of rbGH (5,000 micrograms/day). Total carcass protein was increased by both hormones; however, protein as a percentage of body weight was unchanged. Similarly, neither rbPRL nor rbGH changed the percentage of carcass moisture. Percentage of body fat was increased by rbPRL but was decreased by rbGH. Weight of the gastrointestinal tract and kidneys was increased by both hormones, but increases were in proportion to body weight gain. These data confirm that ungulate prolactin is a hyperphagic agent in the female rat. In addition, they suggest that, while prolactin stimulates growth in mature female rats, this growth is probably not via a somatogenic mechanism.


Sign in / Sign up

Export Citation Format

Share Document