scholarly journals A GH receptor antisense oligonucleotide inhibits hepatic GH receptor expression, IGF-I production and body weight gain in normal mice

2006 ◽  
Vol 189 (1) ◽  
pp. 147-154 ◽  
Author(s):  
G Tachas ◽  
S Lofthouse ◽  
C J Wraight ◽  
B F Baker ◽  
N B Sioufi ◽  
...  

Diabetic retinopathy and acromegaly are diseases associated with excess action of GH and its effector IGF-I, and there is a need for improved therapies. We have designed an optimised 2′-O-(2-methoxyethyl)-modified phosphorothioate oligodeoxynucleotide, ATL 227446, and demonstrated its ability to suppress GH receptor mRNA in vitro. Subcutaneous injections of ATL 227446 reduced GH receptor mRNA levels, GH binding activity and serum IGF-I levels in mice after seven days of dosing. The reduction in serum IGF-I could be sustained for over ten weeks of dosing at therapeutically relevant levels, during which there was also a significant decrease in body weight gain in antisense-treated mice relative to saline and mismatch control-treated mice. The findings indicate that administration of an antisense oligonucleotide to the GH receptor may be applicable to human diseases in which suppression of GH action provides therapeutic benefit.

1995 ◽  
Vol 144 (3) ◽  
pp. 449-456 ◽  
Author(s):  
N X Ninh ◽  
J-P Thissen ◽  
D Maiter ◽  
E Adam ◽  
N Mulumba ◽  
...  

Abstract Zinc depletion attenuates growth and decreases circulating IGF-I. To investigate the mechanisms responsible for the IGF-I decline, we determined the effects of dietary zinc (Zn) deficiency on body and organ growth, serum IGF-I, serum GH-binding protein (GHBP), liver GH receptors and liver expression of their corresponding gene. After 1 week of adaptation to a normal zinc diet, a zinc-deficient diet (ZD; Zn, 0 p.p.m.) or a zinc-normal diet (CTR; Zn, 75 p.p.m.) was available ad libitum to 4-week-old Wistar rats for 4 weeks. Pair-fed animals (PF) received the zinc-normal diet in the same absolute amount as that consumed the day before by the ZD group. The food intake of ZD and PF rats was reduced by 32% (P<0·001) compared with the CTR group. Zinc depletion specifically reduced body weight gain (−22%, P<0·05), serum IGF-I concentrations (−52%, P<0·001), hepatic GH receptors (−28%; P<0·05) and serum GHBP levels (−51%; P<0·05), compared with the PF group. GH concentrations were reduced in ZD animals compared with CTR rats (P<0·01). The caloric restriction of PF animals also decreased body weight gain (−50%, P<0·001), serum IGF-I concentrations (−21%, P<0·05), liver GH receptors (−38%, P<0·001) and serum GHBP levels (−38%, P<0·01), when compared with the CTR group. Both ZD and PF groups had reduced liver IGF-I and GH receptor/GHBP mRNA levels in comparison with the CTR group (P<0·01). However, only liver IGF-I mRNA levels were specifically reduced by zinc deficiency (ZD vs PF rats; P<0·05). Our observations suggest that beside the decline of GH secretion, decreased hepatic GH receptors and/or GHBP concentrations might be responsible for the decline of circulating IGF-I in ZD animals. Journal of Endocrinology (1995) 144, 449–456


1998 ◽  
pp. 109-117 ◽  
Author(s):  
MY Donath ◽  
W Zierhut ◽  
MA Gosteli-Peter ◽  
C Hauri ◽  
ER Froesch ◽  
...  

Adult rat cardiomyocytes in long-term culture reexpress several fetal cardiac proteins which also reappear during overload heart hypertrophy in vivo. IGF-I decreases reexpression of some of these proteins and stimulates myofibrillogenesis. IGF-I might therefore contribute to enhancing readaptation of the heart to overload. In order to test this hypothesis, hypertension was induced in male Wistar Kyoto rats by constriction of the left renal artery, and an infusion of 500 microg/day of recombinant human IGF-I (rhIGF-I) or vehicle was started after the operation via intraabdominally implanted osmotic minipumps. In the vehicle-treated hypertensive animals body weight gain was reduced after 3, 7 and 14 days, whereas rhIGF-I-treated hypertensive animals continued to gain weight like sham-operated animals. Left ventricular weight and the left, but not the right ventricle/body weight ratio increased more in rhIGF-I- than in vehicle-infused rats. Left ventricular IGF-I mRNA levels remained unchanged after renal clipping in both vehicle- and rhIGF-I-treated rats. However, beta-myosin heavy chain (MHC) mRNA in the left ventricle was 6- to 10-fold increased in clipped controls during the whole postoperative period, and rhIGF-I reduced this increase by more than 50% on days 7 and 14. On the first postoperative day, rhIGF-I prevented the decrease (50%) of alpha-MHC mRNA and the increase (2.5-fold of atrial natriuretic factor mRNA in the left ventricle. Renal clipping did not alter cardiac alpha-actin, but enhanced skeletal alpha-actin mRNA expression in the left ventricle up to 2.5-fold. However, both mRNAs were unaffected by rhIGF-I treatment. Restoration of body weight gain and stimulation of left ventricular cardiac weight by rhIGF-I as well as partial reversion of hypertension-induced changes in cardiac protein expression may reflect beneficial effects contributing to enhance readaptation of the heart to overload.


1994 ◽  
Vol 266 (5) ◽  
pp. E776-E785 ◽  
Author(s):  
P. A. Weller ◽  
M. J. Dauncey ◽  
P. C. Bates ◽  
J. M. Brameld ◽  
P. J. Buttery ◽  
...  

Regulation of insulin-like growth factor I (IGF-I) and growth hormone (GH) receptor mRNA in liver and muscle by energy status was assessed in 2-mo-old pigs by altering thermoregulatory demand and energy intake over a 5-wk period to produce a range of plasma IGF-I concentrations from 3.5 +/- 0.7 to 28.9 +/- 6.2 nmol/l. These values were related directly to growth rates (0.06 +/- 0.02 to 0.44 +/- 0.01 kg/day) and total hepatic IGF-I mRNA levels. Increased growth rates were accompanied by an increase in hepatic class 1 and class 2 IGF-I mRNA levels and an increase in the ratio of class 2 to class 1 IGF-I mRNA in liver, suggesting a distinct role for class 2 expression in the endocrine growth response. High levels of class 1 transcripts and a virtual absence of class 2 transcripts characterized all muscle tissues examined, and there was no correlation with plasma IGF-I levels. This suggests that growth promotion in response to increased energy status is regulated via endocrine hepatic IGF-I rather than via a paracrine response. The levels of GH receptor mRNA were positively correlated with overall growth rate (P < 0.005) in liver and negatively correlated (P < 0.05) in muscle, indicating distinct tissue-specific effects of energy status.


2000 ◽  
Vol 165 (3) ◽  
pp. 537-544 ◽  
Author(s):  
I Ibanez De Caceres ◽  
MA Villanua ◽  
L Soto ◽  
AI Martin ◽  
A Lopez-Calderon

Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. We have previously reported that adjuvant-induced arthritis in rats results in a decrease in body weight gain, pituitary GH mRNA, circulating GH and IGF-I together with an increase in serum IGF-binding proteins (IGFBPs). The aim of this study was to analyze the role of GH in the decrease in body weight and in the alterations in the IGF-I system observed in chronic inflammation. Male Wistar rats were injected with complete Freund's adjuvant and 16 days later arthritic rats were injected daily with recombinant human GH (rhGH) (3 IU/kg s.c.) for 8 days; control rats received 250 microl saline. Arthritis significantly decreased body weight gain and serum IGF-I. These decreases were not due to the reduced food intake, since in pair-fed rats they were not observed. Furthermore, administration of rhGH to arthritic rats increased body weight gain without modifying food intake. To further investigate the effect of GH administration, 14 days after adjuvant injection both control and arthritic rats were treated with 0, 1.5, 3 or 6 IU/kg of rhGH. GH treatment at the dose of 3 and 6 IU/kg significantly increased body weight gain in arthritic rats. GH administration, at the higher dose of 6 IU/kg, increased hepatic and serum concentrations of IGF-I in both control and arthritic rats. In control rats, rhGH at the three doses assayed increased circulating IGFBP-3. GH treatment in arthritic rats decreased IGFBP-1 and -2, and did not modify IGFBP-4. GH treatment at the dose of 3 IU/kg also decreased circulating IGFBP-3 in arthritic rats. These data suggest that GH treatment can ameliorate the catabolism observed in adjuvant-induced arthritis, an effect mediated, at least in part, by modifications in the circulating IGFBPs.


1989 ◽  
Vol 122 (1) ◽  
pp. 79-86 ◽  
Author(s):  
D. J. Flint ◽  
M. J. Gardner

ABSTRACT Treatment of rats for 24 h on day 2, 10 or 20 of age with a specific antiserum to rGH (anti-(rGH)), GH, bromocriptine (CB-154) or prolactin failed to influence body weight gain or serum concentrations of insulin-like growth factor-I (IGF-I). On day 28 of age, however, anti-(rGH) completely inhibited body weight gain and markedly reduced circulating IGF-I concentrations, effects which were completely prevented by exogenous ovine GH (oGH). When administered to control rats on day 28 oGH caused supranormal weight gain and serum IGF-I concentrations. These results suggested that GH does not play a significant role in growth or regulation of serum IGF-I until after day 20 of age. By contrast, when anti-(rGH) was given for 4 consecutive days beginning on day 2 of life, body weight gain was reduced within 48 h and remained so until at least 28 days of age. Tail length was also significantly reduced. The effect was due to inhibition of GH effects since serum GH concentrations were low and exogenous GH prevented the effect. Inhibition of growth during the first 14 days of life occurred in the absence of any effect on serum IGF-I although by 21 days of age serum IGF-I was considerably lower than in control rats. The prolonged reduction in growth after treatment has stopped appeared to be due to a cytotoxic effect on the pituitary gland since pituitary weight and GH but not prolactin content were significantly decreased. The data are consistent with the hypothesis that in the neonate GH may be processed in serum so that a proportion of it is not recognized by an antiserum to pituitary GH. It would appear that inhibition of GH secretion reduces growth rate by at least 30–40% up to 14 days of age, 50% by 21 days of age and completely by 28 days. Effects of GH on growth could not be fully explained by regulation of serum IGF-I concentrations. Journal of Endocrinology (1989) 122, 79–86


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chung Shil Kwak ◽  
Mi-Ju Kim ◽  
Sunyeong Park ◽  
In Gyu Kim

Obesity is closely associated with oxidative stress and chronic inflammation leading to related metabolic diseases. Some natural extracts or polyphenols reportedly possess anti-obesity and anti-inflammatory effects as well as antioxidant activity. In this study, we assessed the correlations between the antioxidant, anti-obesity, and anti-inflammatory activities of plant extracts with potent antioxidant activity in diet-induced obese mice. Sprouts of Cedrela sinensis (CS) and Oenothera biennis L. (OB) were selected as the most potent antioxidant plant based on analysis of in vitro antioxidant activity of the extracts of ten different edible plants. C57BL/6 mice were fed with a high-fat diet (HFD) and orally treated with 50% ethanol extract of CS or OB at 50 or 100 mg/kg body weight 5 days a week for 14 weeks. Body weight gain, weight of adipose tissue, adipocyte size, and levels of lipid metabolism, inflammation, and oxidative stress markers were investigated. The CS or OB extract reduced body weight gain, visceral adipose tissue weight, adipocyte size, and plasma leptin levels, and expressions of adipogenic genes (PPARγ and fatty acid synthase) in the adipose tissue and liver of HFD-fed mice. Both extracts also reduced mRNA levels of pro-inflammatory cytokines (IL-6 and TNF-α) and oxidative stress-related genes (heme oxygenase- (HO-) 1 and p40phox). Body weight gain of mice was significantly correlated with visceral adipose tissue weight and adipocyte size. Body weight gain and adipocyte size were significantly correlated with plasma total cholesterol and 8-epi PGF2α levels, mRNA levels of leptin, HO-1, p40phox, and CD-11 in the adipose tissue, and mRNA levels of TNF-α in the adipose tissue and liver. These results suggest that the CS and OB extracts with potent antioxidant activity may inhibit fat deposition in adipose tissue and subsequent inflammation.


2021 ◽  
Author(s):  
Karunakaran Reddy Sankaran ◽  
Lokanatha Oruganti ◽  
Muni Swamy Ganjayi ◽  
Venkataramaiah Chintha ◽  
Muni Kesavulu Muppuru ◽  
...  

Abstract Background: Consumption of energy dense foods and sedentary lifestyles have led to high prevalence of obesity and associated disorders. Intensive research efforts have focussed to develop effective alternative therapeutics from plant sources. Bauhiniastatins have been reported to possess antineoplastic activity. In the present study, Bauhiniastatin-1 (BSTN1) was isolated and purified from Bauhinia purpurea and evaluated for its therapeutic efficacy against adipogenesis and obesity using high fat diet (HFD)-induced obese rodent model and 3T3-L1 cells.Methods: We performed in-vitro experiments like MTT assay, Oil Red O (ORO) stain, cellular lipid content, glycerol release and RT-PCR analysis in 3T3-L1 cells. In-vivo parameters like body weight gain, body composition, plasma adipokines, serum & liver lipid profiles, liver marker enzymes, western blot analysis and histopathological examination were conducted in rat model. In addition, molecular docking studies were also performed to understand interaction of BSTN1 with peroxisome proliferator-activated gamma receptor (PPAR-γ) and AMP-activated protein kinase (AMPK) which supported our experimental results.Results: BSTN1 at 20 μM significantly (p<0.001) inhibited cell differentiation and lipid accumulation of 3T3-L1 adipocytes. Mechanistic studies showed that mRNA expression of key adipogenic markers, PPAR-γ, fatty acid synthase (FAS) and sterol-regulatory element-binding protein-1 (SREBP1) were down-regulated while AMPK was up-regulated by BSTN1. Oral administration of BSTN1 (5 mg/kg. b.wt.) to HFD-induced obese rats substantially decreased body weight gain, fat mass, serum and liver lipid levels and promoted integrity of hepatic and adipose tissue architecture compared to HFD-control rats. In BSTN1 administered groups, decreased serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, decreased plasma leptin but increased adiponectin levels were noted. Western blot analysis of adipose and hepatic tissues collected from BSTN1 treated rats showed decreased expression level of PPAR-γ but increase in AMPK expression relative to the untreated group. In-silico studies showed strong binding interactions of BSTN1 against PPAR-γ and AMPK, the key molecules of adipogenesis and obesity.Conclusions: Taken together, the results suggest that BSTN1 could be promising molecule for the treatment of diet-induced obesity and non-alcoholic fatty liver disease (NAFLD).


Author(s):  
Geke Aline Boer ◽  
Jenna Hunt ◽  
Maria Gabe ◽  
Johanne Windeløv ◽  
Alexander Sparre-Ulricht ◽  
...  

Background and purpose The incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K-cells in the proximal intestine, may regulate lipid metabolism and adiposity but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt-1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high-fat diet (HFD)-induced body weight gain in ovariectomized mice during an 8-week treatment period. Key results mGIPAnt-1 showed competitive antagonistic properties to the GIP receptor (GIPR) in vitro as it inhibited GIP-induced cAMP accumulation in COS-7 cells. Furthermore, mGIPAnt-1 was capable of inhibiting GIP-induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half-life of 7.2 hours in C57Bl6 female mice. Finally, sub-chronic treatment with mGIPAnt-1 in ovariectomized HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt-1 successfully inhibited acute GIP-induced effects in vitro and in vivo and sub-chronically induces resistance to HFD-induced weight gain in ovariectomized mice. Our results support the development of GIP antagonists for the therapy of obesity.


2007 ◽  
Vol 292 (6) ◽  
pp. E1656-E1665 ◽  
Author(s):  
Miriam Granado ◽  
Ana I Martín ◽  
Mª Ángeles Villanúa ◽  
Asunción López-Calderón

Chronic arthritis induces cachexia associated with an inhibition of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system and an activation of the E3 ubiquitin-ligating enzymes muscle atrophy F-box (MAFbx) and muscle Ring finger 1 (MuRF1) in the skeletal muscle. The aim of this work was to study the role of cyclooxygenase (COX)-2 in chronic arthritis-induced cachexia. Arthritis was induced in rats by Freund's adjuvant injection, and the effects of two COX inhibitors (indomethacin, a nonspecific inhibitor, and meloxicam, a selective COX-2 inhibitor on pituitary GH and on liver and serum IGF-I levels) were tested. Arthritis decreased body weight gain and GH and liver IGF-I gene expression. In the arthritic rats, both inhibitors, indomethacin and meloxicam, prevented the inhibitory effect of arthritis on body weight gain. Indomethacin and meloxicam administration to arthritic rats increased pituitary GH and liver IGF-I mRNA as well as serum levels of IGF-I. These data suggest that induction of COX-2 during chronic inflammation is involved in the inhibition of the GH-IGF-I axis and in the body weight loss. In the gastrocnemius muscle, arthritis increased the gene expression of tumor necrosis factor (TNF)-α, the E3 ubiquitin-ligating enzymes MAFbx and MuRF1, as well as of IGF-I and IGF-binding protein-5 (IGFBP-5). Inhibition of COX-2 by meloxicam administration increased gastrocnemius weight and decreased MAFbx, MuRF1, TNF-α, and IGFBP-5 gene expression. In summary, our data indicate that chronic arthritis-induced cachexia and muscle wasting are mediated by the COX-2 pathway resulting in a decreased GH-IGF-I secretion and increased expression of MAFbx and MuRF1 mRNA.


Sign in / Sign up

Export Citation Format

Share Document