Chorioamnionitis reduces placental endocrine functions: the role of bacterial lipopolysaccharide and superoxide anion

1997 ◽  
Vol 155 (3) ◽  
pp. 401-410 ◽  
Author(s):  
T Okada ◽  
N Matsuzaki ◽  
K Sawai ◽  
T Nobunaga ◽  
K Shimoya ◽  
...  

Chorioamnionitis has been shown to be one of the most important factors in inducing preterm delivery. The present study was undertaken to examine the effects of chorioamnionitis on placental endocrine functions. Preterm placentas with histologic chorioamnionitis produced smaller amounts of human chorionic gonadotropin (hCG) and human placental lactogen (hPL) than those without chorioamnionitis (P < 0.001). To examine the mechanism involved in the suppression of placental endocrine functions induced by chorioamnionitis, we initially confirmed the expression of lipopolysaccharide (LPS) receptor, i.e. the CD14 molecule, on trophoblasts by Northern blot analysis and immunohistochemistry. We then stimulated purified trophoblasts with LPS, which is the major agent which induces inflammatory responses in the host via the LPS receptor. The trophoblasts stimulated with LPS produced reduced amounts of hCG, hPL, and progesterone in a time- and dose-dependent fashion in spite of the induced manganese-superoxide dismutase (SOD) synthesis. Stimulation of trophoblasts with hypoxanthine and xanthine oxidase resulted in suppressed hCG production, while the simultaneous addition of SOD into the culture medium reversed the suppression of hCG production. LPS in the placenta with chorioamnionitis might directly stimulate trophoblasts through the LPS receptor (CD14), thus reducing placental endocrine functions. Superoxide anions which exogenously act on trophoblasts might be generated by simultaneous stimulation of neutrophils and monocytes at the feto-maternal interface by LPS, and additively reduce placental endocrine functions.

2006 ◽  
Vol 74 (5) ◽  
pp. 2809-2816 ◽  
Author(s):  
Jannet Katz ◽  
Ping Zhang ◽  
Michael Martin ◽  
Stefanie N. Vogel ◽  
Suzanne M. Michalek

ABSTRACT Francisella tularensis, a gram-negative bacterium, is the etiologic agent of tularemia and has recently been classified as a category A bioterrorism agent. Infections with F. tularensis result in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms mediating this response have not been completely elucidated. In the present study, we determined the role of Toll-like receptors (TLRs) in mediating inflammatory responses to F. tularensis LVS, and the role of NF-κB in regulating these responses. Stimulation of bone marrow-derived dendritic cells from C57BL/6 wild-type (wt) and TLR4−/− but not TLR2−/− mice, with live F. tularensis LVS elicited a dose-dependent increase in the production of tumor necrosis factor alpha. F. tularensis LVS also induced in a dose-dependent manner an up-regulation in the expression of the costimulatory molecules CD80 and CD86 and of CD40 and the major histocompatibility complex class II molecules on dendritic cells from wt and TLR4−/− but not TLR2−/− mice. TLR6, not TLR1, was shown to be involved in mediating the inflammatory response to F. tularensis LVS, indicating that the functional heterodimer is TLR2/TLR6. Stimulation of dendritic cells with F. tularensis resulted in the activation of NF-κB, which resulted in a differential effect on the production of pro- and anti-inflammatory cytokines. Taken together, our results demonstrate the role of TLR2/TLR6 in the host's inflammatory response to F. tularensis LVS in vitro and the regulatory function of NF-κB in modulating the inflammatory response.


1988 ◽  
Vol 167 (6) ◽  
pp. 1963-1968 ◽  
Author(s):  
L S Gray ◽  
J Gnarra ◽  
E L Hewlett ◽  
V H Engelhard

Cholera toxin (CT), but not pertussis toxin (PT), treatment of cloned murine CTL inhibited target cell lysis in a dose-dependent fashion. The effects of CT were mimicked by forskolin and cyclic adenosine monophosphate (cAMP) analogues. Inhibition of cytotoxicity by CT and cAMP analogs was mediated in part by attenuation of conjugate formation. Additionally, both CT and cAMP analogs blocked the increase in intracellular Ca2+ induced by stimulation of the TCR complex by mAbs. These findings indicate that cAMP inhibits the activity of CTL by two distinct mechanisms and suggests a role for this second messenger in CTL-mediated cytolysis.


Development ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 211-222
Author(s):  
Wai Chang Ho ◽  
Kathleen B. Bechtol

Four monoclonal antibodies, XT-I, MT-23, MT-24 and MT-29, that bind the XT-1-differentiation-antigen of male germ cells have been used to investigate the biological role of the XT-1-molecule of germ cells in short-term primary culture. Cultures from 10 days postpartum mice demonstrate increasing numbers of antigen-positive germ cells and increased antigen expression per cell with succeeding days of culture. Treatment of the antigen-positive cultures with three of the monoclonal antibodies, XT-I, MT-23 and MT-24, increases germ cell-germ cell adhesion in a dose-dependent fashion. Treatment with the fourth monoclonal antibody, MT-29, does not induce cell adhesion. The monovalent, Fab fragment of XT-I-antibody also elicits tight cell adhesion, thus ruling out antibody cross linking of molecules or cells. Saturating or near saturating amounts of the positive antibodies are required to produce adhesion, a result consistent with perturbation of a function that is performed by the sum of action of many of the XT-1-molecules on the cell. The ability of germ cells to undergo antibody-elicited tight adhesion is dependent on germ cell age and/or XT-1-antigen concentration. We hypothesize that the XT- 1-molecule is involved in regulation of cell adhesion, an event which must occur in normal development.


1981 ◽  
Author(s):  
S E Graber ◽  
J Hawiger

Membrane receptor for fibrinogen plays an essential role in adhesion and aggregation of human platelets by allowing fibrinogen to bridge two or more platelets together. Whereas in normal, unstimulated platelets fibrinogen receptor is not available, it becomes mobilized upon stimulation of platelets with thrombin, ADP, and other stimuli. The mechanism(s) regulating availability of membrane receptor for fibrinogen remains unknown. Following our recent demonstration that prostacyclin (PGI2) prevents mobilization of fibrinogen receptor by thrombin and ADP (Nature 1980, 283,195), we investigated the relationship between cAMP levels and fibrinogen receptor availability. Platelets separated from plasma proteins were briefly exposed to a low thrombin concentration (0.05 U/ml) followed by hirudin to inactivate free thrombin. Binding of 125I-fi- brinogen and cAMP levels were determined in parallel samples. A dose-dependent rise in platelet cAMP levels from 3.3 pM to 10.3 pM/108 platelets in response to PGI2 (3×10-9M - 3×108M) was accompanied by a corresponding inhibition of 125I-fibrinogen binding. The degree of the cAMP increment correlated with binding inhibition (r=0.96). The inhibition of 125I-fibrinogen binding by PGI2 was sustained up to 120 min and was paralleled by a persistent rise in cAMP level. Stimulation of platelet cAMP synthesis “from within” by a ribosylation of the nucleotide regulatory component with subunit A1 of cholera toxin also increased cAMP levels and inhibited fibrinogen receptor mobilization.These results provide evidence that “up and down” regulation of fibrinogen receptor in platelets is linked to changes in cAMP levels induced by different types of adenyl cyclase antagonists and agonists.


2006 ◽  
Vol 142 (4) ◽  
pp. 1701-1709 ◽  
Author(s):  
Felisa Wolfe-Simon ◽  
Valentin Starovoytov ◽  
John R. Reinfelder ◽  
Oscar Schofield ◽  
Paul G. Falkowski

1999 ◽  
Vol 276 (2) ◽  
pp. G479-G484 ◽  
Author(s):  
Philippe Bauer ◽  
Janice M. Russell ◽  
D. Neil Granger

Products of enteric bacteria, including endotoxin [lipopolysaccharide (LPS)], have been implicated in the acute inflammatory responses elicited by ischemia and reperfusion (I/R) of the small intestine. The objective of this study was to assess the contribution of LPS to the increased E-selectin expression observed in the intestinal vasculature after I/R. The dual radiolabeled monoclonal antibody technique was used in LPS-sensitive (C3HeB/FeJ) and LPS-insensitive (C3H/HeJ) mice that were exposed to either exogenous LPS or to gut I/R (45 min ischemia, 5 h reperfusion). LPS elicited a dose-dependent (0.5–50 μg LPS/animal) increase in E-selectin expression (at 3 h) in LPS-sensitive mice, whereas LPS-insensitive mice were largely unresponsive. E-selectin expression was increased fivefold by I/R in the small bowel of both LPS-sensitive and -insensitive mice. These results indicate that, although exogenous LPS is capable of eliciting profound dose-dependent increases in E-selectin expression, endogenous LPS does not contribute significantly to I/R-induced expression of this endothelial cell adhesion molecule.


Sign in / Sign up

Export Citation Format

Share Document