scholarly journals Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

2001 ◽  
Vol 169 (3) ◽  
pp. 549-561 ◽  
Author(s):  
M Kveiborg ◽  
A Flyvbjerg ◽  
EF Eriksen ◽  
M Kassem

While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P<0.001) in a dose- (0.1-10 ng/ml), and time-dependent (12-72 h) manner. No significant effects on IGF-II gene expression were detectable. Employing RNase protection and nuclear run-on assays, these effects on IGF-I were found to take place at the transcriptional level and were not dependent on de novo protein synthesis. Using the transient transfection of various fragments of the IGF-I promoter 1, we found that TGF-beta responsive elements were present in a promoter fragment ranging from-65 bp to+55 bp relative to the major transcription start site in exon 1. In addition, TGF-beta1 treatment resulted in a dose- and time-dependent increase (2-fold) in the IGFBP-3 steady-state mRNA level as well as in protein production but did not affect IGFBP-2 or IGFBP-4 at mRNA or protein levels. Our results indicate that TGF-beta1 exerts significant effects on stimulatory components of the IGF-system and that may represent a mechanism mediating TGF-beta effects on the biological functions of osteoblasts.

1991 ◽  
Vol 131 (2) ◽  
pp. 203-209 ◽  
Author(s):  
S. C. Butterwith ◽  
C. Goddard

ABSTRACT Adipose tissue growth can occur by both hypertrophy and hyperplasia. The capacity for adipocyte hyperplasia in vivo resides in a population of fibroblast-like adipocyte precursor cells but the regulation of the proliferation of these cells by growth factors has not been well characterized. This study was designed to determine the effects of the insulin-like growth factors (IGF-I and IGF-II), platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1) added alone or together on the proliferation of primary adipocyte precursor cells in vitro. Adipocyte precursor cell proliferation measured by [3H]thymidine incorporation into DNA was stimulated by all of these growth factors and was particularly marked with PDGF. IGF-I or IGF-II added together with TGF-β1 produced a greater than additive response and the effect of PDGF was synergistic with that of IGF-I at certain concentrations. Stimulation of proliferation of some cell types by TGF-β has been linked to the secondary production of PDGF but the evidence we have suggests that this is unlikely in chicken adipocyte precursors. DNA synthesis in response to TGF-β1 required only a short exposure to the peptide, and conditioned medium from chicken adipocyte precursor cells previously exposed to TGF-β had no effect on DNA synthesis when added to fresh batches of cells. Addition of TGF-β1 together with PDGF produced a synergistic effect whereas an additive effect would be expected if PDGF mediated the effect of TGF-β1. IGF-I mRNA is expressed in the Ob 1771 preadipocyte cell line during differentiation, in stromalvascular cells from adipose tissue, and TGF-β mRNA is expressed in both proliferating and differentiating 3T3-L1 preadipocytes. Together with the data presented here, this would indicate that these peptides have a role in adipocyte development by an autocrine or paracrine mechanism although the source of PDGF in vivo is at present unknown. Journal of Endocrinology (1991) 131, 203–209


1994 ◽  
Vol 267 (6) ◽  
pp. E990-E1001 ◽  
Author(s):  
M. Slater ◽  
J. Patava ◽  
K. Kingham ◽  
R. S. Mason

Human fetal osteoblast-like cells formed a regular multilayered structure in vitro with an extensive collagen-based extracellular matrix. With colloidal gold immunocytochemistry, labels for alkaline phosphatase and osteocalcin were distributed in a relatively diffuse pattern, in contrast to the bone growth factors, insulin-like growth factors I and II (IGF-I and IGF-II), transforming growth factor-beta 1 (TGF-beta 1), and basic fibroblast growth factor, which were colocalized in the collagenous matrix of the multilayer. The inclusion of 17 beta-estradiol (10(-11) to 10(-9) M) in the culture medium increased multilayer depths, increased labeling for IGF-I, IGF-II, and TGF-beta 1, and resulted in earlier detection of TGF-beta 1 label. In contrast, the increase in multilayer depth resulting from treatment with human platelets, an exogenous source of growth factors, was not accompanied by an increase in matrix IGF-I, IGF-II, or TGF-beta 1 label, suggesting a particular effect of estradiol to facilitate this process. Because growth factors in bone matrix may act as coupling agents when released during resorption, reduced growth factor incorporation in the presence of reduced sex steroid concentrations may lead to uncoupling of resorption and subsequent formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Anna Zairi ◽  
Theodoros Lambrianidis ◽  
Ourania Pantelidou ◽  
Serafim Papadimitriou ◽  
Dimitrios Tziafas

The aim of this study was the comparative evaluation of inflammatory reactions and tissue responses to four growth factors, or mineral trioxide aggregate (MTA), or a zinc-oxide-eugenol-based cement (IRM) as controls, when used for the repair of furcal perforations in dogs’ teeth. Results showed significantly higher inflammatory cell response in the transforming growth factorβ1 (TGFβ1) and zinc-oxide-eugenol-based cement (IRM) groups and higher rates of epithelial proliferation in the TGFβ1, basic fibroblast growth factor (bFGF), and insulin growth factor-I (IGF-I) groups compared to the MTA. Significantly higher rates of bone formation were found in the control groups compared to the osteogenic protein-1 (OP-1). Significantly higher rates of cementum formation were observed in the IGF-I and bFGF groups compared to the IRM. None of the biologically active molecules can be suggested for repairing furcal perforations, despite the fact that growth factors exerted a clear stimulatory effect on cementum formation and inhibited collagen capsule formation. MTA exhibited better results than the growth factors.


1994 ◽  
Vol 267 (5) ◽  
pp. G843-G850 ◽  
Author(s):  
S. Oguchi ◽  
W. A. Walker ◽  
I. R. Sanderson

Previous reports have shown that gastrointestinal epithelial cells produce insulin-like growth factor-binding proteins (IGF-BP), which modulate the actions of IGF. This study aims to examine the relationship between differentiation and IGF-BP secretion by human intestinal epithelial cells and the effect of growth factors on their production. Caco-2 cells were cultured in serum-free media. IGF-BP secretion into the incubation media was analyzed by Western ligand blotting and immunoblotting. Caco-2 cells produced IGF-BP-2, IGF-BP-3, and IGF-BP-4. Secretion of IGF-BP-2 and IGF-BP-3 increased with differentiation, but IGF-BP-4 secretion diminished. The effect of exogenous growth factors on IGF-BP secretion was maximal at earlier stages of differentiation. IGF-I stimulated mainly IGF-BP-3 production, but epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) stimulated predominantly IGF-BP-4 secretion. Adding an anti-EGF receptor antibody to block autocrine TGF-alpha activity inhibited IGF-BP-4 production but stimulated IGF-BP-2 and IGF-BP-3. In conclusion, the profile of IGF-BP secretion changes with differentiation. IGF-I and EGF (or TGF-alpha) stimulate different types of IGF-BP, with autocrine TGF-alpha activity being a factor affecting IGF-BP production during differentiation.


2000 ◽  
Vol 167 (2) ◽  
pp. 331-338 ◽  
Author(s):  
T Leinskold ◽  
TE Adrian ◽  
U Arnelo ◽  
J Larsson ◽  
J Permert

Insulin-like growth factor-I (IGF-I) has been demonstrated to exert a nitrogen sparing effect, both experimentally and in patients after abdominal surgery. IGF-I is a major mediator for the anabolic effects of growth hormone (GH). Whether elevated circulating IGF-I levels are the sole mediator of the anabolic effects following GH has not been clarified. IGF-I influences glucose metabolism, both through its own specific receptor and by activating the insulin receptor, and has also been proposed to influence pancreatic islet secretion directly. In the present study, the postoperative effects of IGF-I on plasma levels of other gastrointestinal and pancreatic islet hormones and growth factors were measured in patients after abdominal surgery. Fifteen patients who were candidates for large bowel resection were randomly divided into two groups: IGF-I-treated (n=8) and placebo-treated (n=7). The IGF-I group received daily two s.c. injections of human recombinant IGF-I (80 microg/kg body weight) for five days, beginning on the morning of the first postoperative day. The other group received placebo injections. Fasting plasma levels of gastrointestinal growth factors (epidermal growth factor, transforming growth factor-alpha, IGF-II), gastrointestinal hormones (gastrin, enteroglucagon, peptide YY), and islet hormones (insulin, islet amyloid polypeptide (IAPP) and pancreatic glucagon) were determined by RIA preoperatively and after five days of treatment. No significant effects of IGF-I on other growth factors or gastrointestinal hormones were seen. A marked increase in plasma insulin postoperatively compared with the preoperative levels (42+/-3 vs 61+/-5 pM, P<0.05) was seen in the placebo group, whereas the postoperative levels in the IGF-I-treated patients remained unchanged (44+/-3 vs 45+/-4 pM). A similar pattern was observed for IAPP and cortisol concentrations. No differences in glucagon concentrations were seen. In conclusion, these results suggest that IGF-I does not influence production of other gastrointestinal hormones thought to be involved in alimentary growth or pancreatic glucagon. In contrast, IGF-I caused a marked reduction of insulin and IAPP secretion. The inhibition of beta-cell secretion could be direct or, alternatively, could involve an improvement in postoperative insulin resistance, perhaps by reducing serum cortisol.


1997 ◽  
Vol 138 (4) ◽  
pp. 747-758 ◽  
Author(s):  
Peter J. Dempsey ◽  
Katherine S. Meise ◽  
Yoshino Yoshitake ◽  
Katsuzo Nishikawa ◽  
Robert J. Coffey

EGF precursor (proEGF) is a member of the family of membrane-anchored EGF-like growth factors that bind with high affinity to the epidermal growth factor receptor (EGFR). In contrast to human transforming growth factor-α precursor (proTGFα), which is sorted basolaterally in Madin-Darby canine kidney (MDCK) cells (Dempsey, P., and R. Coffey, 1994. J. Biol. Chem. 269:16878–16889), we now demonstrate that human proEGF overexpressed in MDCK cells is found predominantly at the apical membrane domain under steady-state conditions. Nascent proEGF (185 kD) is not sorted but is delivered equally to the apical and basolateral membranes, where it is proteolytically cleaved within its ectodomain to release a soluble 170-kD EGF form into the medium. Unlike the fate of TGFα in MDCK cells, the soluble 170-kD EGF species accumulates in the medium, does not interact with the EGFR, and is not processed to the mature 6-kD peptide. We show that the rate of ectodomain cleavage of 185-kD proEGF is fourfold greater at the basolateral surface than at the apical surface and is sensitive to a metalloprotease inhibitor, batimastat. Batimastat dramatically inhibited the release of soluble 170-kD EGF into the apical and basal medium by 7 and 60%, respectively, and caused a concordant increase in the expression of 185-kD proEGF at the apical and basolateral cell surfaces of 150 and 280%, respectively. We propose that preferential ectodomain cleavage at the basolateral surface contributes to apical domain localization of 185-kD proEGF in MDCK cells, and this provides a novel mechanism to achieve a polarized distribution of cell surface membrane proteins under steady-state conditions. In addition, differences in disposition of EGF and TGFα in polarized epithelial cells offer a new conceptual framework to consider the actions of these polypeptide growth factors.


1995 ◽  
Vol 10 (4) ◽  
pp. 216-220 ◽  
Author(s):  
R. McWilliam ◽  
R.E. Leake ◽  
J.R.T. Coutts

The levels of oestradiol (E2), progesterone (P4), transforming growth factor a (TGFa), transforming growth factor β2 (TGFβ2), insulin-like growth factor I (IGF-I), platelet-derived growth factor AB (PDGF-AB) and epidermal growth factor (EGF) were measured in follicular fluids obtained from patients undergoing ovarian stimulation as part of an in vitro fertilisation program. Each of the substances was detected in all of the fluid samples tested, except TGFα (which was detected in 90% of samples tested), PDGF-AB (70%) and EGF (2%). Comparisons were made between each of these factors, follicular maturity, successful oocyte recovery and the outcome of fertilisation and embryo transfer. No statistically significant correlations were found. The presence of receptors for EGF, IGF-I and PDGF in extracts from granulosa-luteal cells isolated from follicular fluids was detected by means of Western blotting. The co-localisation of these growth factors and their receptors within the ovarian follicle suggests a likely role in control of follicular development.


1992 ◽  
Vol 134 (2) ◽  
pp. 163-168 ◽  
Author(s):  
S. C. Butterwith ◽  
C. D. Peddie ◽  
C. Goddard

ABSTRACT The hyperplastic capacity of adipose tissue resides in a group of fibroblast-like adipocyte precursor cells. There is evidence to suggest that their proliferation and differentiation is regulated by insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) but there is less information about other growth factors which may also participate in adipocyte precursor cell hyperplasia. Transforming growth factor-α (TGF-α) is a 50 amino acid polypeptide which has been shown to stimulate proliferation in both neoplastic and normal cell types acting through the epidermal growth factor (EGF) receptor. We have studied the regulation of DNA synthesis and the activity of lipoprotein lipase by TGF-α in chicken adipocyte precursor cells in vitro. Both TGF-α and EGF stimulated incorporation of [3H]thymidine into DNA in a dose-dependent manner. TGF-α was approximately 180-fold more potent than EGF. Addition of TGF-α in combination with IGF-I, TGF-β1 or platelet-derived growth factor produced a synergistic increase in DNA synthesis. Short-term incubation with TGF-α reduced lipoprotein lipase activity by 23%. These results show that TGF-α is a potent mitogen in these adipocyte precursor cells and can inhibit their differentiation in vitro and may participate in the regulation of adipose tissue development in vivo. Journal of Endocrinology (1992) 134, 163–168


1997 ◽  
Vol 154 (1) ◽  
pp. 45-55 ◽  
Author(s):  
D A Belford ◽  
M-L Rogers ◽  
G L Francis ◽  
C Payne ◽  
F J Ballard ◽  
...  

Abstract Cation-exchange chromatography effectively concentrates the cell growth activity present in whey and we have used this process as a basis to characterise further the growth factors present in bovine milk. Under neutral conditions, total bioactivity in the growth factor-enriched cation-exchange fraction chromatographed with an apparent molecular mass of 80–100 kDa. In contrast, acid gelfiltration chromatography resolved two peaks of cell growth activity. A peak at 15–25 kDa contained the bulk of growth activity for Balb/c 3T3 fibroblasts while bioactivity for L6 myoblasts and skin fibroblasts eluted with a molecular mass of 6 kDa. A peak of inhibitory activity for Mv1Lu and MDCK cells also eluted at 15–25 kDa. Both IGF-I and IGF-II were purified from fractions that eluted at 6 kDa, although the IGF peptides alone did not account for the total bioactivity recovered. Platelet-derived growth factor (PDGF), identified by radioreceptor assay, eluted at a slightly higher molecular mass than the peak of growth activity for Balb/c 3T3 cells, and an anti-PDGF antibody was without effect on the growth of Balb/c 3T3 cells in response to the whey-derived factors. Further purification of the inhibitory activity for epithelial cells yielded a sequence for transforming growth factor β (TGF-β), and all inhibitory activity for Mv1Lu cells was immuno-neutralised by an antibody against TGF-β. In contrast, this antibody decreased the growth of Balb/c 3T3 fibroblasts in the whey-derived extract by only 10%. Finally, a cocktail of recombinant growth factors containing IGF-I, IGF-II, PDGF, TGF-β and fibroblast growth factor 2 stimulated growth of Balb/c 3T3 cells to a level equivalent to only 51% of that observed in the milk-derived growth factor preparation. We conclude that: (i) cell growth activity recovered from bovine whey is present in acid-labile high molecular weight complexes; (ii) all cell growth inhibitory activity for epithelial cells can be accounted for by TGF-β; (iii) IGF-I and IGF-II co-elute with the major peak of activity for L6 myoblasts and skin fibroblasts, although the IGF peptides alone do not explain the growth of these cells in the whey-derived extract; and (iv) neither PDGF nor TGF-β account for the 15–25 kDa peak of Balb/c 3T3 growth activity. These data suggest the presence of additional mitogenic factors in bovine milk. Journal of Endocrinology (1997) 154, 45–55


Sign in / Sign up

Export Citation Format

Share Document