scholarly journals Stress–strain behaviour of hybrid-fibre engineered cementitious composite in compression

2020 ◽  
Vol 32 (2) ◽  
pp. 53-65 ◽  
Author(s):  
Zhenbo Wang ◽  
Jianping Zuo ◽  
Xiaoyan Zhang ◽  
Guanghui Jiang ◽  
Lulu Feng
2012 ◽  
Vol 450-451 ◽  
pp. 563-567 ◽  
Author(s):  
Joel Bell ◽  
Yi Xia Zhang ◽  
Khin Soe ◽  
Phillip Hermes

High-velocity impact behaviour of hybrid-fibre engineered cementitious composite (ECC) panels subjected to an impact from a hardened steel, ogive-nosed projectile at velocities between 300-700 m/s is investigated and reported in this paper. The new ECC mix contains a proportion of 0.75% volume high-modulus steel fibres and 1.25% volume low modulus polyvinyl-alcohol (PVA) fibres. The mix is designed to achieve a desired balance between the strain hardening behaviour and impact resistance of material required for impact and blast resistant structures. The new hybrid-fibre ECC demonstrates its excellent capability for impact resistance and strong potential as a protective material with reduced impact damage and distributed micro cracking.


2014 ◽  
Vol 984-985 ◽  
pp. 677-683
Author(s):  
T. Meena ◽  
G. Elangovan ◽  
R. Ganesh

Self-Compacting Concrete (SCC) is a highly flowable, self-levelling concrete. Just as in Fibre Reinforced Concrete (FRC), fibres can be incorporated into SCC also to get FRSCC. In the present study hybrid fibres namely, Polypropylene and hooked ended Steel fibres are incorporated in different volume fractions and their fresh and hardened state properties have been studied. Fly ash and Silica Fume obtained as waste from industries are used as replacement for cement, the replacement being 10% and 5% respectively. The behaviour of HFRSCC under compression, tension and flexure has been experimentally observed. The stress-strain behaviour of SCC and HFRSCC have also been studied by varying the combinations of volume fractions of hybrid fibres.


2017 ◽  
Vol 21 (4) ◽  
pp. 589-597 ◽  
Author(s):  
YX Zhang ◽  
Zachary Kerr ◽  
Brian Jarvis ◽  
Rhys J Volant

In this article, a new engineered cementitious composite reinforced with 0.6% volume steel fibres and 1.5% volume polyvinyl-alcohol fibres is developed aiming for enhanced impact resistance compared to other construction materials. Fundamental mechanical properties of the new composite including the compressive strength, Young’s modulus, tensile strength and flexural behaviour were tested. To calibrate the impact resistance of the new composite, high-velocity impact tests of panels made of the new material were conducted when subjected to impact from a standard 7.62 mm round in-service bullet fired from a knight armament SR-25 military rifle. For comparison, plain concrete panels and concrete panels reinforced with 2% volume steel fibres were also tested. The post-impact responses of the panels in terms of crater sizes, damage failure mode, fragmentation size, weight and regress velocity are analysed and compared to characterize the impact resistance of the new engineered cementitious composite. The test results demonstrate significantly enhanced impact and shatter resistance of the new hybrid fibre-reinforced cementitious composite with reduced spalling and fragmentation, localized damage areas and improved cracking resistance.


Sign in / Sign up

Export Citation Format

Share Document