Low-energy design strategies for retrofitting existing residential buildings in Cyprus

Author(s):  
Bertug Ozarisoy ◽  
Hasim Altan
Author(s):  
Maryam Khatibi

The study presents the results of typological analysis and simulation modeling analysis of traditional courtyard residential houses in the cold semi-arid climate of Iran. The purpose of the research has been to analyze and evaluate traditional passive environmental strategies and their elements to provide implications for the design of sustainable residential buildings in contemporary time. Five existing traditional courtyard houses in the city of Tabriz, Iran, are used as case-studies to analyze the typology and the solar zoning conditions and to develop simulation models. The Ecotect simulation program is used to calculate the solar gains of the buildings and to analyze the effectiveness of the natural passive systems along with native design strategies in terms of potential solar gains of main and secondary living spaces. However, in the vernacular, not only the awareness of the climatic and topological considerations is important, but also the values, rituals, and beliefs that shape the design of the dwellings need to be considered. The research is based on the hypothesis that vernacular buildings (courtyard houses) of Iran have been environmentally sustainable structures. However, an important challenge of the study has been to avoid the technological bias and to consider the cultural and social aspects and embodiment of the studied houses, as well. The study also addresses the potential shortcomings that limit the reliability of Iranian vernacular architecture at present in order to arrive at a more holistic understanding of the sustainability of the vernacular architecture in the country. 


2016 ◽  
Vol 108 ◽  
pp. 63-72 ◽  
Author(s):  
Violeta Kaunelienė ◽  
Tadas Prasauskas ◽  
Edvinas Krugly ◽  
Inga Stasiulaitienė ◽  
Darius Čiužas ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 237 ◽  
Author(s):  
S. Soutullo ◽  
E. Giancola ◽  
M. J. Jiménez ◽  
J. A. Ferrer ◽  
M. N. Sánchez

Based on the European energy directives, the building sector has to provide comfortable levels for occupants with minimum energy consumption as well as to reduce greenhouse gas emissions. This paper aims to compare the impact of climate change on the energy performance of residential buildings in order to derive potential design strategies. Different climate file inputs of Madrid have been used to quantify comparatively the thermal needs of two reference residential buildings located in this city. One of them represents buildings older than 40 years built according to the applicable Spanish regulations prior to 1979. The other refers to buildings erected in the last decade under more energy-restrictive constructive regulations. Three different climate databases of Madrid have been used to assess the impact of the evolution of the climate in recent years on the thermal demands of these two reference buildings. Two of them are typical meteorological years (TMY) derived from weather data measured before 2000. On the contrary, the third one is an experimental file representing the average values of the meteorological variables registered in Madrid during the last decade. Annual and monthly comparisons are done between the three climate databases assessing the climate changes. Compared to the TMYs databases, the experimental one records an average air temperature of 1.8 °C higher and an average value of relative humidity that is 9% lower.


2019 ◽  
Vol 111 ◽  
pp. 04002 ◽  
Author(s):  
Kyriaki Foteinaki ◽  
Rongling Li ◽  
Alfred Heller ◽  
Morten Herget Christensen ◽  
Carsten Rode

This study analysed the dynamic thermal response of a low-energy building using measurement data from an apartment block in Copenhagen, Denmark. Measurements were collected during February and July 2018 on space heating energy use, set-points, room air temperature and temperature from sensors integrated inside concrete elements, i.e. internal walls and ceiling, at different heights and depths. The heating system was controlled by the occupants. During February, there were unusually high set-points for some days and a regular heating pattern for some other days. Overheating was observed during July. A considerable effect of solar gain was observed both during winter and summer months. The room air temperature fluctuations were observed at a certain extent inside the concrete elements; higher in the non-load-bearing internal wall, followed by the load-bearing internal wall and lastly by the ceiling. The phenomenon of delayed thermal response of the concrete elements was observed. All internal concrete masses examined may be regarded as active elements and can contribute to the physically available heat storage potential of the building. The study provides deep insight into the thermal response of concrete elements in low-energy residential buildings, which should be considered when planning a flexible space heating energy use.


Author(s):  
Serik Tokbolat ◽  
Raikhan Tokpatayeva ◽  
Sarim Naji Al-Zubaidy

Buildings account for nearly 40% of the end-use energy consumption and carbon emissions globally. These buildings, once built, are bound to be utilized for several decades if not longer. The building sector therefore holds a significant responsibility for implementing strategies to increase energy efficiency and reduce carbon emissions and thus contribute to global efforts directed toward mitigating the adverse effects of climate change. This paper presents an oversight of effective low-energy building design strategies for the extreme weather conditions in Kazakhstan (Astana), with temperature ranging between −35 and +40 C. Passive design features coupled with integration of renewable energy technologies have been identified for the next generation of buildings in Astana. The specific nature of the work is intentional, it is a continuing attempt to generate relevant know how that has direct relevancy to Astana’s system approach to energy conversation to meet its extreme winters.


Sign in / Sign up

Export Citation Format

Share Document