Freight Distribution Analysis and Modelling of Inland Waterway Transport along the Yangtze River Economic Belt using Big Data

Author(s):  
Guihua Deng ◽  
Ming Zhong ◽  
Mo Lei ◽  
John Douglas Hunt ◽  
Wanle Wang ◽  
...  

The Yangtze River Economic Belt (YREB) serves as the main east-west axis of China to promote economic development and environmental protection along the Yangtze River. This paper analyses the factors that affect the freight distribution of major types of cargo transported through the Yangtze River, using data from the automatic identification system (AIS) and ship visa data. First, a set of freight impedance functions are developed for different types of links of the waterway network, by considering a number of factors such as cargo types, delays at ship locks, water levels and flows at different waterway segments and upstream and downstream shipping speeds. Both the distance- and time-based impedance matrices of different types of cargo are computed, respectively. After that, gravity model (GM) and intervening opportunity model (IOM) are estimated to simulate the distribution of different types of cargo based on the computed impedance matrices. Meanwhile, a trip length distribution (TLD) method is applied to validate the estimated distribution models. The results indicate that GM with a power term outperforms other models, and the time-based models are superior to the distance-based ones for the prediction of freight distributions over large geographies like the YREB. This work offers an in-depth understanding of the freight characteristics of inland waterways and therefore it should be helpful for relevant authorities in formulating their port and inland waterway plans and policies.

2021 ◽  
Vol 9 (4) ◽  
pp. 410
Author(s):  
Fan Zhang ◽  
Xin Peng ◽  
Liang Huang ◽  
Man Zhu ◽  
Yuanqiao Wen ◽  
...  

In this study, a method for dynamically establishing ship domain in inland waters is proposed to help make decisions about ship collision avoidance. The surrounding waters of the target ship are divided to grids and then calculating the grid densities of ships in each moment to determine the shape and size of ship domain of different types of ships. At last, based on the spatiotemporal statistical method, the characteristics of ship domains of different types of ship in different navigational environments were analyzed. The proposed method is applied to establish ship domains of different types of ship in Wuhan section of the Yangtze River in January, February, July, and August in 2014. The results show that the size of ship domain increases as the ship size increases in each month. The domain size is significantly influenced by the water level, and the ship domain size in dry seasons is larger than in the wet seasons of inland waters.


2018 ◽  
Vol 71 (5) ◽  
pp. 1210-1230 ◽  
Author(s):  
Liangbin Zhao ◽  
Guoyou Shi ◽  
Jiaxuan Yang

Data derived from the Automatic Identification System (AIS) plays a key role in water traffic data mining. However, there are various errors regarding time and space. To improve availability, AIS data quality dimensions are presented for detecting errors of AIS tracks including physical integrity, spatial logical integrity and time accuracy. After systematic summary and analysis, algorithms for error pre-processing are proposed. Track comparison maps and traffic density maps for different types of ships are derived to verify applicability based on the AIS data from the Chinese Zhoushan Islands from January to February 2015. The results indicate that the algorithms can effectively improve the quality of AIS trajectories.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1484 ◽  
Author(s):  
Jinyan Sun ◽  
Lei Ding ◽  
Jiaze Li ◽  
Haiming Qian ◽  
Mengting Huang ◽  
...  

The spatial extent and area of river islands are always changing due to the impact of hydrodynamic conditions, sediment supply and human activities. A catastrophic flood disaster was driven by sustained and heavy rainfall around the middle and lower Yangtze River in 18 June to 21 July 2016. The flood resulted in the most serious social-economic loss since 1954 and caused a larger-scale inundation for a short time. It is essential to continuously monitor the dynamics changes of river islands because this can avoid frequent field measurements in river islands before and after flood disasters, which are helpful for flood warning. This paper focuses on the temporal change of three river islands called Fenghuangzhou, Changshazhou, and one uninhabited island in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV (wide field view) data was used for our study owing to its fine spatial and temporal resolution. A simple NDWI (Normalized Difference Water Index) method was used for the river island mapping. Human checking was then performed to ensure mapping accuracy. We estimated the relationship between the area of river islands and measured water levels using four models. Furthermore, we mapped the spatial pattern of inundation risk of river islands. The results indicate a good ability of the GF-1 WFV data with a 16-m spatial resolution to characterize the variation of river islands and to study the association between flood disaster and river islands. A significantly negative but nonlinear relationship between the water level and the area of the river island was observed. We also found that the cubic function fits best among three models (R2 > 0.8, P < 0.001). The maximum of the inundated area at the river island appeared in the rainy season on 8 July 2016 and the minimum occurred in the dry season on 28 December 2016, which is consistent with the water level measured by the hydrological station. Our results derived from GF-1 data can provide a useful reference for decision-making of flood warning, disaster assessment, and post-disaster reconstruction.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1216
Author(s):  
Lijun Liu ◽  
Fan Zhang

Wind speed affects the navigational safety of the Yangtze River, and assessing its spatiotemporal dynamics provides support for navigation management and disaster prevention. We developed a wind multiplier downscaling method integrating the effects of land use and topography, and used meteorological station observations and European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim (ERA-Interim) reanalysis data for statistical downscaling in the Yangtze River inland waterway region from 1980 to 2017. Compared with reanalysis data, the downscaling products showed improved accuracy (especially at 5–10 m/s), and are consistent with site-based interannual variability observations. Increasing maximum wind speeds in the middle–downstream area was observed from 1980 to 1990, while a decreasing trend was observed from 2010 to 2017; the opposite was observed for the upstream. Land use has significant influence on wind speed, with a decreasing trend observed year by year for wind speed above grade 9. Although the proportion of grade 4–8 wind speed over water is small and the trend is not obvious, grade 9–10 wind speeds displayed an increasing trend from 2010 to 2017, indicating that changes in surface roughness have a significant influence on wind speed in the Yangtze River inland waterway.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Suning Liu ◽  
Yi Zheng ◽  
Lian Feng ◽  
Ji Chen ◽  
Venkataraman Lakshmi ◽  
...  

AbstractThis study focuses on the evolution of flood risk in the Yangtze River Basin under climate change, which is a critical issue for socioeconomic development in future. In this study, we (1) compared the 1998 and 2020 floods and found that the destructiveness of a given discharge is now greater than before; (2) revealed three issues related to the above finding; and (3) prospected the future development of up-to-date technologies to better address the issue that floods with high water levels will frequently threaten us. The outcomes of this study would be of great significance to future flood control operation of large river basins.


2022 ◽  
pp. 1-22
Author(s):  
Magdalena I. Asborno ◽  
Sarah Hernandez ◽  
Kenneth N. Mitchell ◽  
Manzi Yves

Abstract Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84⋅0% accuracy in detecting stops at ports and 83⋅5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.


Author(s):  
Md. Rokonuzzaman ◽  
Nazmus Shakib ◽  
Mashiur Rahman Shakil ◽  
Kausarul Islam ◽  
Md Reaz Hasan Khondoker ◽  
...  

2013 ◽  
Vol 864-867 ◽  
pp. 2207-2212 ◽  
Author(s):  
Jing Zheng

In the middle and downstream area of the Yangtze River, low water levels had occurred at post-flood season or before the flood season in recent years, since the trial impoundment of the Three Gorges Reservoir (TGR) in 2008. Based on the analysis of the low water levels, both rating curve of main stations in the middle and lower reaches of the Yangtze River and the operation of TGR in the dry season were analyzed in study to reveal the effects of the impoundment of TGR on water level of downstream areas. The research results show that the water supplement of the TGR could raise the downstream water level, which has positive effect on water supplement and navigation in this area.


Sign in / Sign up

Export Citation Format

Share Document