scholarly journals Aluminum uptake and toxicity in cultured mouse hepatocytes.

1991 ◽  
Vol 1 (12) ◽  
pp. 1299-1304
Author(s):  
K Abreo ◽  
J Jangula ◽  
S K Jain ◽  
M Sella ◽  
J Glass

Hepatic aluminum (Al) accumulation in association with hepatobiliary dysfunction has been described in children receiving contaminated parenteral alimentation solutions and in aluminum-overloaded experimental animals. The mechanisms of hepatic Al uptake are not clearly understood, and it is not known whether Al is directly toxic to the hepatic cell or if toxicity occurs from the effect of Al on hepatic iron (Fe) metabolism. Al causes a microcytic hypochromic anemia and concomitant hepatic Al and Fe can accumulate in dialysis patients, suggesting that Al may alter Fe metabolism. Therefore, Al uptake and toxicity were studied in mouse hepatocytes in culture. Al accumulation, cell growth, media hepatic enzyme concentrations, and cell malonyldialdehyde concentrations, a marker of membrane lipid peroxidation, were measured in mouse hepatocytes grown in media containing either Al citrate, transferrin-Al (Tf-Al), or no additions over 96 h. Al uptake occurred only in cells grown in Tf-Al and Al citrate at 24 h and increased linearly achieving cellular concentrations at 96 h of 522 +/- 36 and 186 +/- 12 micrograms/L, respectively, compared with 31 +/- 3 micrograms/L (P less than 0.001) in control media. Inhibition of cell growth occurred at 48, 72, and 96 h (P less than 0.001), and media lactate dehydrogenase and aspartate aminotransferase concentrations increased starting at 48 and 72 h, respectively (P less than 0.001), only in media containing Tf-Al. Cell malonyldialdehyde levels were significantly higher in Tf-Al-loaded mouse hepatocytes compared with control cells at 96 h (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

FEBS Open Bio ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 1703-1710 ◽  
Author(s):  
Xian‐Yang Qin ◽  
Jun Lu ◽  
Muyi Cai ◽  
Soichi Kojima

1970 ◽  
Vol 17 ◽  
pp. 83-88
Author(s):  
MJ Hossain ◽  
MA Bari ◽  
NA Ara ◽  
SM Shahinul Islam

Context: Carbon plays a vital role in plant cell growth and regeneration in artificial media but the source of carbon deserves scientific investigation to analysis their comparative performance. Objectives: To analyze the comparative performance of different carbon sources (glucose, sucrose and sorbitol) in cell growth and regeneration efficiency of banana (Musa spp) cultivars. Materials and Methods: Male flowers of banana cultivars cv. Sabri, Gine and Ranginsagar were used in this experiment. Male flowers were cut into small pieces and they were transferred in petri dishes containing Murashige and Skoog media supplemented with 2 mg/l 2,4-D + 1mg/l NAA + 1mg/l IAA + 1mg/l Biotin + 1mg/l glutamine and 3% (w/v) different sugars: sucrose, glucose, and sorbitol singly or in combinations autoclaved in 121ºC temperature for 20 min. The pH of the medium was adjusted to 5.8. Results:  Glucose showed the highest performance in callus induction and cell growth and 3% glucose proved as the optimal dose in media formulation for callus induction and cell growth. Sucrose and sorbitol behaves differently in embryo formation and they produced the highest and lowest number of embryos respectively in regeneration medium. In respect of overall performance the highest percentages of shoot and root formation was obtained in the media containing 3% sucrose. Conclusion:  Glucose proved to be the best carbon source in callus induction and cell growth media.  Key words:  Banana; Musa; callus; single cell; regenerationDOI: 10.3329/jbs.v17i0.7111J. bio-sci. 17: 83-88, 2009


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1839-1839
Author(s):  
Aalim M Weljie ◽  
Paola Neri ◽  
Farzana Sayani ◽  
Nizar J Bahlis

Abstract Abstract 1839 Poster Board I-865 Introduction and Objectives: Bortezomib (BZ) is a chemotherapeutic agent approved for the treatment of multiple myeloma (MM). BZ acts through proteasome inhibition, inducing significant ER stress and ideally resulting in cell death. Unfortunately, nearly 20% of MM patients are primarily resistant to BZ treatment and responses to BZ are difficult to predict based on the currently available clinical, cytogenetic and genomic biomarkers. Our function hypothesis is that extracellular metabolites have a greater potential to be found in circulating biofluids as biomarkers. As a result we used a metabolite ‘footprinting’ approach in cell growth media to examine the metabolic consequences of BZ treatment using eight human MM cell lines, three of which have been determined to be less sensitive to BZ treatment than the others with a 10 fold difference in their IC50 at 24 hours (5 nM vs 50 nM). Our aims were 1) to establish whether analysis of growth media was suitable for monitoring metabolic changes and 2) to determine specific biopatterns of BZ resistance. Methods: Eight MM cell lines (MM1S, MM1R, INA6, U266, RPMI8266, OPM2, KMS11 and PCL1) were cultured under standard conditions without (control group, 10% FBS) or with bortezomib added (10nM). Media samples were taken for metabolic analysis at 6 and 24 hours for a total of 32 media profiles. Metabolite profiling was accomplished using gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). GC-MS data was analysed using AMDIS (NIST), and NMR data using Chenomx NMR Suite. Significant metabolites were identified using multivariate regression analysis by supervised projection methods (two-way orthogonal partial least squares discriminant analysis, O2PLS-DA) using SIMCA-P (Umetrics). Results: An average of 756 chemical or metabolite components per sample were profiled, which was reduced to a subset of 116 unique features that were shared in at least 75% of samples. An initial O2PLS-DA model was successfully built from the GC-MS feature set using both growth time (p=0.03) and BZ status (p=6.9e-13) in the Y-matrix. Figure 1 shows a scores plot, where each point represents a single sample, and the position is calculated as a combination of the underlying metabolite concentrations. Changes in cell growth were consistent with the known uptake of carbohydrate substrates and elimination of various amino acids and waste products such as lactate. The remarkable metabolic difference between BZ-treated and untreated cells resulted from reduced energy-related metabolites such as citric acid cycle intermediates and sugars, with a concomitant increase in selected amino acids. Intriguingly, the BZ-insensitive cell cultures exhibit overall metabolic phenotypes much more similar to the BZ-sensitive cultures than to the untreated group, with the exception of a single sample after 6 hours (denoted with an asterisk in Figure 1) which showed an averaged profile. To further probe the phenomenon of BZ resistance, the treated group was analyzed independently, with the 37 most influential components providing discriminating ability between the BZ-insensitive and BZ-sensitive cells (p= 0.04) in an OPLS-DA model. Conclusions: We conclude that metabolite footprinting is a reliable and robust method for monitoring metabolic events for both cell growth and BZ treatment. Furthermore, BZ-insensitivity is accompanied by a notable shift from carbohydrate metabolism to fatty acid metabolism, while the overall metabolic phenotype remains very similar in both BZ-sensitive and insensitive strains in the presence of the drug. This result suggests that BZ function remains largely intact in both sensitive and insensitive cell lines, and resistance is conferred through alternate mechanisms with measureable metabolic endpoints. Success in measuring extracellular metabolites also supports the notion of serum-accessible biomarkers or biopatterns of BZ resistance. The unique genetic instability underlying each cell line may provide a further avenue for characterizing resistance mechanisms along with analysis of various intracellular components. Disclosures: No relevant conflicts of interest to declare.


1986 ◽  
Vol 6 (2) ◽  
pp. 92-95 ◽  
Author(s):  
Massimo Taccone-Gallucc ◽  
Omero Giardini ◽  
Riccardo Lubrano ◽  
Valentina Mazzarella ◽  
Donatella Bandino ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 577-581 ◽  
Author(s):  
Marek Gołębiowski ◽  
Ewa Siedlecka ◽  
Monika Paszkiewicz ◽  
Krzysztof Brzozowski ◽  
Piotr Stepnowski

2009 ◽  
Vol 8 (5) ◽  
pp. 790-799 ◽  
Author(s):  
Jun Luo ◽  
Yasuhiro Matsuo ◽  
Galina Gulis ◽  
Haylee Hinz ◽  
Jana Patton-Vogt ◽  
...  

ABSTRACT To investigate the contributions of phosphatidylethanolamine to the growth and morphogenesis of the fission yeast Schizosaccharomyces pombe, we have characterized three predicted genes in this organism, designated psd1, psd2, and psd3, encoding phosphatidylserine decarboxylases, which catalyze the conversion of phosphatidylserine to phosphatidylethanolamine in both eukaryotic and prokaryotic organisms. S. pombe mutants carrying deletions in any one or two psd genes are viable in complex rich medium and synthetic defined minimal medium. However, mutants carrying deletions in all three psd genes (psd1-3Δ mutants) grow slowly in rich medium and are inviable in minimal medium, indicating that the psd1 to psd3 gene products share overlapping essential cellular functions. Supplementation of growth media with ethanolamine, which can be converted to phosphatidylethanolamine by the Kennedy pathway, restores growth to psd1-3Δ cells in minimal medium, indicating that phosphatidylethanolamine is essential for S. pombe cell growth. psd1-3Δ cells produce lower levels of phosphatidylethanolamine than wild-type cells, even in medium supplemented with ethanolamine, indicating that the Kennedy pathway can only partially compensate for the loss of phosphatidylserine decarboxylase activity in S. pombe. psd1-3Δ cells appear morphologically indistinguishable from wild-type S. pombe cells in medium supplemented with ethanolamine, but when cultured in nonsupplemented medium, they produce high frequencies of abnormally shaped cells as well as cells exhibiting severe septation defects, including multiple, mispositioned, deformed, and misoriented septa. Our results demonstrate that phosphatidylethanolamine is essential for cell growth and for normal cytokinesis and cellular morphogenesis in S. pombe, and they illustrate the usefulness of this model eukaryote for investigating potentially conserved biological and molecular functions of phosphatidylethanolamine.


1986 ◽  
Vol 261 (16) ◽  
pp. 7196-7203
Author(s):  
C Rujanavech ◽  
D F Silbert
Keyword(s):  

2019 ◽  
Vol 2 (4) ◽  
pp. 181-191
Author(s):  
Guy Rostoker ◽  
Mireille Griuncelli ◽  
Nasredine Ghali ◽  
Séverine Beaudreuil ◽  
Yves Cohen ◽  
...  

Introduction Iron overload is one of the most controversial topics in the management of anemic dialysis patients. Parenteral iron supplementation is commonly prescribed to hemodialysis (HD) patients but less frequently to peritoneal dialysis (PD) patients. Moreover, ferritin targets are far lower and more physiological in PD than in HD.  Methods We compared the liver iron concentration (LIC) measured by means of Signal-Intensity ratio (SIR) magnetic resonance imaging (MRI) according to Rennes University method in a cohort of 32 PD patients living in the Paris region published in 2017, with two cohorts of French HD patients studied in the same way (119 patients reported in 2012 and 80 further patients reported in 2014). Results Normal hepatic iron load (LIC ≤ 50 µmol/g of dry weight) was observed in 81.3% of the 32 PD patients (CI: 64.3-91.5%), as compared to only 16% (CI: 10.4-23.7%) in the first HD cohort and 35% (CI: 25.4-45.9%) in the second HD cohort (p<0.0001 for both comparisons; X2 test). Mild iron overload (50 < LIC ≤ 100 µmol/g) was found in 5 PD patients and severe overload (LIC > 200 µmol/g) in only one PD patient (who had received IV iron) (3.1%; CI: 0-17.1%). Conversely, severe iron overload was found in 30.3% of patients in the first HD cohort (CI: 22.7-39%) and 11.3% of those in the second HD cohort (CI: 5.8-20.2%) (p= 0.0033 versus the first HD cohort, X2 test). Conclusion Contrary to hemodialysis patients, iron overload is rare and mostly mild in peritoneal dialysis patients.


Sign in / Sign up

Export Citation Format

Share Document