scholarly journals ENERMONGRID: Intelligent Energy Monitoring, Visualization and Fraud Detection for Smart Grids

2020 ◽  
Vol 7 (2-1) ◽  
pp. 44-55
Author(s):  
Miguel Lagares Lemos ◽  
Yuliana Pérez Gallardo ◽  
Ángel Lagares Lemos ◽  
Juan Miguel Gómez Berbís

The current obsolete electricity network is being transformed into net an advanced, digitalized and more efficient one known as Smart Grid. The deployment of an Automatic Metering Infrastructure will make an unseen quantity of rich information available in near real-time, processed to make decisions for the optimal energy production, generation, distribution, and consumption. This document presents an analysis of the ENERMONGRID tool, a tool used for intelligent energy monitoring, data visualization and fraud detection in electric networks.

Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


2022 ◽  
pp. 1317-1334
Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2187 ◽  
Author(s):  
Monica Alonso ◽  
Hortensia Amaris ◽  
Daniel Alcala ◽  
Diana M. Florez R.

Sensors for monitoring electrical parameters over an entire electricity network infrastructure play a fundamental role in protecting smart grids and improving the network’s energy efficiency. When a short circuit takes place in a smart grid it has to be sensed as soon as possible to reduce its fault duration along the network and to reduce damage to the electricity infrastructure as well as personal injuries. Existing protection devices, which are used to sense the fault, range from classic analog electro-mechanics relays to modern intelligent electronic devices (IEDs). However, both types of devices have fixed adjustment settings (offline stage) and do not provide any coordination among them under real-time operation. In this paper, a new smart sensor is developed that offers the capability to update its adjustment settings during real-time operation, in coordination with the rest of the smart sensors spread over the network. The proposed sensor and the coordinated protection scheme were tested in a standard smart grid (IEEE 34-bus test system) under different short circuit scenarios and renewable energy penetration. Results suggest that the short-circuit fault sensed by the smart sensor is improved up to 80% and up to 64% compared with analog electromechanics relays and IEDs, respectively.


2014 ◽  
Vol 704 ◽  
pp. 186-189
Author(s):  
Ming Sheng Gao ◽  
Hui Jiang

Due to the volatility and intermittence of wind generation, it is challenging to develop an economic dispatch algorithm for smart grids that not only meets the dynamic demand of electric energy, but also maximizes the benefits of energy suppliers using such renewable resource. In this paper, we account for smart grids with two categories of energy users, namely traditional energy users and opportunistic energy users, and address pricing and dispatch at one period of time (e.g., in hours). We model this problem as a stochastic programming problem that can be solved to determine the optimal day-ahead retail price, real-time price and the procurement of electricity energy.


The proposed smart grid infrastructure aims to make use of the existing public networks such as internet for data communication between consumer premises to the public power utility network. The smart-grid adopts smart-meters which basically collect vast amount of data to provide a holistic view of the connected load behavior and preferences pattern related to power and water consumption. The smart-grids provide benefits to the utilities and consumers alike. For utilities the benefits are real time data collection, ease of power management, and reduced personnel requirement. The benefits for the users on the other hand include availability of real time usage data, providing information on ways to minimize power consumption, monetary savings and so on. Since, the smart-grid uses existing public networks the utilities do not have the burden of installing any new infrastructure (except for installing the smart-meters), thus an added advantage. But, the downside of using the public network is susceptibility to a variety of network attacks, if not guarded well against. This paper talks about the various network security vulnerabilities that exist and the measures to patch the same before employing in the smart grid networks.


Author(s):  
Ken Nagasaka

Recently many utilities, manufacturers, researchers, government leaders around the world are working on a very sophisticated issue, Smart Grid, to modernize both the electric power transmission and distribution grids for the future. As a suitable subject for special issue for the Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII), I found that Smart Grid with its impacts on many fields is a timely subject though related to the fundamental concept of this Journal on Intelligence and real-world applications and so forth. Smart grids are intelligent and self-healing power systems which integrate intelligent transmission network with IT and collect, distribute, and process information about the behavior of all power suppliers and consumers in order to improve reliability, power quality, and to reduce electricity costs. Using a key issue, smart meter, enables smart grids to have smart real time monitoring on a regional and national scale to control and management the grids to avoid or mitigate the system-wide blackouts. In this special issue, we hope to explore breakthrough and new contributions useful to achieve the goal of smart grid. Three papers were selected for this special issue: The first paper proposes a novel idea though a strategic system in energy and environment required in smart grid. Managing sources combination including solar energy as well as the production trading is a new kind of risk management in smart grid. Important extensions of this study includes emissions management program accommodating uncertain and erratic renewable energy sources such as solar and wind energies. The second paper is related to communication aspect required for smart grid technology when renewable energy in small smart communities is interconnected to the smart grid. The simulation model developed in this paper is believed to be a useful tool in real-time power management system in smart grid. Third paper is selected as another hot subject in smart grids; the authors developed an extended procedure that obtains a unit commitment including a significant wind power penetration and PEVs as additional reserves. The shadow prices obtained by the trade-off analysis may provide a basis of evaluating the equivalent cost of the wind farms and the applying PEVs as the reserve and their contribution toward CO2 reduction. Finally, using this opportunity, I would like to thank the reviewers for spending their valuable time for evaluating the papers and quick response which made this special issue catch the time. I would also like to thank the JACIII editorial office for their great assistance for preparing this special issue.


2014 ◽  
Vol 494-495 ◽  
pp. 1837-1840
Author(s):  
Bao Yi Wang ◽  
Xue Liang Zhao ◽  
Shao Min Zhang

With the development of smart grid, mass data collected in real time for equipment monitoring requires higher performance of data store. Hence, a storage system based on cloud platform for smart grid equipment monitoring is designed and achieved. Aiming at electric power monitoring data, this paper designs an improved PI revolving door compression algorithm, which improves the performance of data transmission and storage. Related experiments show the effectiveness of the algorithm. The storage system meets the requirements of real-time, mass, high reliability and high performance of data store in smart grid.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6171
Author(s):  
Mayurkumar Rajkumar Balwani ◽  
Karthik Thirumala ◽  
Vivek Mohan ◽  
Siqi Bu ◽  
Mini Shaji Thomas

Regarding the modern power smart grid, distribution consumers and prosumers are highly concerned about power quality (PQ). In fact, they would prefer to pay higher prices for a reliable and good quality power supply. Unfortunately, utility operators still aim for reliability alone, ignoring the quality of supply voltage and current. There are no clear guidelines for monitoring, penalizing, or implementing PQ-based tariff schemes in LV distribution systems. In addition, the implementation of a PQ-based tariff requires a real-time measuring mechanism at the user end, which is very expensive and difficult to understand for a domestic consumer. This paper presents a novel, low-cost, efficient, and user-friendly smart PQ meter to overcome these issues and limitations. It is essentially a PQ analyzer with energy metering functionality, which implements a novel PQ-based tariff scheme that penalizes consumers violating the PQ limits and provides incentives for a good PQ profile. It measures as many as 28 parameters and keeps track of the PQ for both the consumer and the grid in real-time. This paper demonstrates the specifications, design, and testing of the meter and proves the validity of the concept by practical implementation. The meter is practical, feasible, and economical for implementing PQ-based tariff schemes in LV distribution systems or smart grids.


Sign in / Sign up

Export Citation Format

Share Document