scholarly journals Smart Sensors for Smart Grid Reliability

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2187 ◽  
Author(s):  
Monica Alonso ◽  
Hortensia Amaris ◽  
Daniel Alcala ◽  
Diana M. Florez R.

Sensors for monitoring electrical parameters over an entire electricity network infrastructure play a fundamental role in protecting smart grids and improving the network’s energy efficiency. When a short circuit takes place in a smart grid it has to be sensed as soon as possible to reduce its fault duration along the network and to reduce damage to the electricity infrastructure as well as personal injuries. Existing protection devices, which are used to sense the fault, range from classic analog electro-mechanics relays to modern intelligent electronic devices (IEDs). However, both types of devices have fixed adjustment settings (offline stage) and do not provide any coordination among them under real-time operation. In this paper, a new smart sensor is developed that offers the capability to update its adjustment settings during real-time operation, in coordination with the rest of the smart sensors spread over the network. The proposed sensor and the coordinated protection scheme were tested in a standard smart grid (IEEE 34-bus test system) under different short circuit scenarios and renewable energy penetration. Results suggest that the short-circuit fault sensed by the smart sensor is improved up to 80% and up to 64% compared with analog electromechanics relays and IEDs, respectively.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2752
Author(s):  
Angelina D. Bintoudi ◽  
Lampros Zyglakis ◽  
Apostolos C. Tsolakis ◽  
Paschalis A. Gkaidatzis ◽  
Athanasios Tryferidis ◽  
...  

As microgrids have gained increasing attention over the last decade, more and more applications have emerged, ranging from islanded remote infrastructures to active building blocks of smart grids. To optimally manage the various microgrid assets towards maximum profit, while taking into account reliability and stability, it is essential to properly schedule the overall operation. To that end, this paper presents an optimal scheduling framework for microgrids both for day-ahead and real-time operation. In terms of real-time, this framework evaluates the real-time operation and, based on deviations, it re-optimises the schedule dynamically in order to continuously provide the best possible solution in terms of economic benefit and energy management. To assess the solution, the designed framework has been deployed to a real-life microgrid establishment consisting of residential loads, a PV array and a storage unit. Results demonstrate not only the benefits of the day-ahead optimal scheduling, but also the importance of dynamic re-optimisation when deviations occur between forecasted and real-time values. Given the intermittency of PV generation as well as the stochastic nature of consumption, real-time adaptation leads to significantly improved results.


2012 ◽  
Vol 8 (4) ◽  
pp. 944-952 ◽  
Author(s):  
Pierluigi Siano ◽  
Carlo Cecati ◽  
Hao Yu ◽  
Janusz Kolbusz

2012 ◽  
Vol 18 (1) ◽  
pp. 137-140 ◽  
Author(s):  
John G. Vlachogiannis ◽  
Kwang Y. Lee

2020 ◽  
Vol 6 (4) ◽  
pp. 624-637 ◽  
Author(s):  
Zubair Shah ◽  
Adnan Anwar ◽  
Abdun Naser Mahmood ◽  
Zahir Tari ◽  
Albert Y. Zomaya

Author(s):  
Seong Cheol Kim ◽  
Papia Ray ◽  
S. Surender Reddy

This paper presents an overview of smart grid (SG) technology features such as two-way communication, advanced metering infrastructure (AMI) system, integration of renewable energy, advanced storage techniques, real time operation and control, data management and processing, physical and cyber security, and self-healing, etc. The SG technology allows twoway communications for better reliability, control, efficiency and economics of the power system. With these new SG technologies, consumers have many energy choices, such as use of renewable energy, usage management, flexible rates, electric vehicles (EVs), etc. The requirement of these technologies is the real time operation, and the SG accommodates this realtime operation and control. SG technology allows distributed generation through demand response and energy efficiency technologies to shed the load demand. However, it’s very difficult to adopt these changes to the conventional grids. Utility companies, governments, independent system operators (ISOs) and energy regulatory commissions need to agree on the scope and time frame of these changes.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Sign in / Sign up

Export Citation Format

Share Document