scholarly journals Natural convection in an enclosure with fins in the presence of non-uniform temperature pro-file at vertical wall

Author(s):  
Le Xuan Hoang Khoa ◽  
◽  
Mikhail A. Sheremet ◽  
◽  

The development of energy instrumentation, electronic industry and energy in general is inextrica-bly linked with the intensification of heat and mass transfer occurring in the base units and aggre-gates of energy systems. One of the approaches to solving this problem is to create an extended heat transfer surface by introducing a rib structure or porous inserts. This work is devoted to math-ematical modeling of natural convection in an enclosure in the presence of a rib structure and non-uniform temperature profile on one of the vertical walls. The governing partial differential equa-tions written using dimensionless non-primitive variables “stream function – vorticity – tempera-ture” based on the Boussinesq approximation, in combination with initial and boundary conditions, have been worked out on the basis of the finite difference method. The developed computational model was varified using the mesh independence test and benchmark problems solved by other au-thors. Numerical investigations of unsteady natural convection of viscous fluid in a cavity with a variable temperature on the left wall under an influence of a rib structure have been carried out for the following values of governing parameters: Pr = 0.71, 103 < Ra < 106, and the number of ribs varied from one to three. Distributions of streamlines and isotherms, as well as the dependences of the average Nusselt number and average cavity temperature, were obtained for a steady mode. As a result of the analysis, it has been found that the addition of solid ribs allows to enhance the heat transfer for low Rayleigh numbers, while for Ra  105 one can find an attenuation of convective heat transfer. A growth of the fins heat conductivity characterizes the heat transfer enhancement.

2020 ◽  
Vol 330 ◽  
pp. 01004
Author(s):  
Abdennacer Belazizia ◽  
Smail Benissaad ◽  
Said Abboudi

Steady, laminar, natural convection flow in a square enclosure with partially active vertical wall is considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Finite volume method is used to solve the dimensionless governing equations. The physical problem depends on three parameters: Rayleigh number (Ra =103-106), Prandtl number (Pr=0.71), and the aspect ratio of the enclosure (A=1). The active location takes two positions in the left wall: top (T) and middle (M). The main focus of the study is on examining the effect of Rayleigh number on fluid flow and heat transfer rate. The results including the streamlines, isotherm patterns, flow velocity and the average Nusselt number for different values of Ra. The obtained results show that the increase of Ra leads to enhance heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also by moving the active location from the top to the middle on the left vertical wall, convection and heat transfer rate are more important in case (M). Furthermore for high Rayleigh number (Ra=106), Convection mechanism in (T) case is principally in the top of the enclosure, whereas in the remaining case it covers the entire enclosure.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Yuping Duan ◽  
S. F. Hosseinizadeh ◽  
J. M. Khodadadi

The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For high Ra number cases, the hot fluid at the bottom of the sphere is also observed to rise along the symmetry axis and encounter the sinking colder fluid, thus causing oscillations in the temperature and flow fields. Due to flow obstruction (blockage or confinement) effect of baffles and also because of the extra heating afforded by the isothermal baffle, multi-cell recirculating vortices are observed. This additional heat is directly linked to creation of another recirculating vortex next to the baffle. In effect, hot fluid is directed into the center of the sphere disrupting thermal stratified layers. For the majority of the baffles investigated, the Nusselt numbers were generally lower than the reference cases with no baffle. The extent of heat transfer modification depends on Ra, length, and location of the extended surface. With an insulated baffle, the lowest amount of absorbed heat corresponds to a baffle positioned horizontally. Placing a baffle near the top of the sphere for high Ra number cases can lead to heat transfer enhancement that is linked to disturbance of the thermal boundary layer. With isothermal baffles, heat transfer enhancement is achieved for a baffle placed near the bottom of the sphere due to interaction of the counterclockwise rotating vortex and the stratified layer. For some high Ra cases, strong fluctuations of the flow and thermal fields indicating departure from the pseudosteady-state were observed.


2003 ◽  
Vol 125 (4) ◽  
pp. 624-634 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar natural convection (using Boussinesq approximation) within a differentially heated square cavity due to the presence of a single thin fin is presented. Attachment of highly conductive thin fins with lengths equal to 20, 35 and 50 percent of the side, positioned at 7 locations on the hot left wall were examined for Ra=104,105,106, and 107 and Pr=0.707 (total of 84 cases). Placing a fin on the hot left wall generally alters the clockwise rotating vortex that is established due to buoyancy-induced convection. Two competing mechanisms that are responsible for flow and thermal modifications are identified. One is due to the blockage effect of the fin, whereas the other is due to extra heating of the fluid that is accommodated by the fin. The degree of flow modification due to blockage is enhanced by increasing the length of the fin. Under certain conditions, smaller vortices are formed between the fin and the top insulated wall. Viewing the minimum value of the stream function field as a measure of the strength of flow modification, it is shown that for high Rayleigh numbers the flow field is enhanced regardless of the fin’s length and position. This suggests that the extra heating mechanism outweighs the blockage effect for high Rayleigh numbers. By introducing a fin, the heat transfer capacity on the anchoring wall is always degraded, however heat transfer on the cold wall without the fin can be promoted for high Rayleigh numbers and with the fins placed closer to the insulated walls. A correlation among the mean Nu, Ra, fin’s length and its position is proposed.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


Author(s):  
Xizhen Ma ◽  
Wen Fu ◽  
Haijun Jia ◽  
Peiyue Li ◽  
Jun Li

The non-condensable gas is used to keep the pressure stable in the steam-gas pressurizer. The processes of heat and mass transfer during steam condensation in the presence of non-condensable gas play an important role and the thermal hydraulic characteristics in the pressurizer is particularly complicated due to the non-condensable gas. The effects of non-condensable gas on the process of heat and mass transfer during steam condensation were experimental investigated. A steam condensation experimental system under high pressure and natural convection was built and nitrogen was chosen in the experiments. The steam and nitrogen were considered in thermal equilibrium and shared the same temperature in the vessel under natural convection. In the experiments, the factors, for instance, pressure, mass fraction of nitrogen, subcooling of wall and the distribution of nitrogen in the steam, had been taken into account. The rate of heat transfer of steam condensation on the vertical wall with nitrogen was obtained and the heat transfer coefficients were also calculated. The characteristics curve of heat and mass transfer during steam condensation with non-condensable gas under high pressure were obtained and an empirical correlation was introduced to calculated to heat transfer coefficient of steam condensation with nitrogen which the calculation results showed great agreement with the experimental data.


2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


1995 ◽  
Vol 117 (4) ◽  
pp. 910-917 ◽  
Author(s):  
T. J. Heindel ◽  
F. P. Incropera ◽  
S. Ramadhyani

Three-dimensional numerical predictions and experimental data have been obtained for natural convection from a 3 × 3 array of discrete heat sources flush-mounted on one vertical wall of a rectangular cavity and cooled by the opposing wall. Predictions performed in a companion paper (Heindel et al., 1995a) revealed that three-dimensional edge effects are significant and that, with increasing Rayleigh number, flow and heat transfer become more uniform across each heater face. The three-dimensional predictions are in excellent agreement with the data of this study, whereas a two-dimensional model of the experimental geometry underpredicts average heat transfer by as much as 20 percent. Experimental row-averaged Nusselt numbers are well correlated with a Rayleigh number exponent of 0.25 for RaLz ≲ 1.2 × 108.


2000 ◽  
Vol 123 (1) ◽  
pp. 84-95 ◽  
Author(s):  
C. J. Ho ◽  
F. J. Tu

An experimental and numerical investigation is presented concerning the natural convection of water near its maximum-density in a differentially heated rectangular enclosure at high Rayleigh numbers, in which an oscillatory convection regime may arise. The water in a tall enclosure of Ay=8 is initially at rest and at a uniform temperature below 4°C and then the temperature of the hot vertical wall is suddenly raised and kept at a uniform temperature above 4°C. The cold vertical wall is maintained at a constant uniform temperature equal to that of the initial temperature of the water. The top and bottom walls are insulated. Using thermally sensitive liquid crystal particles as tracers, flow and temperature fields of a temporally oscillatory convection was documented experimentally for RaW=3.454×105 with the density inversion parameter θm=0.5. The oscillatory convection features a cyclic sequence of onset at the lower quarter-height region, growth, and decay of the upward-drifting secondary vortices within counter-rotating bicellular flows in the enclosure. Two and three-dimensional numerical simulations corresponding to the visualization experiments are undertaken. Comparison of experimental with numerical results reveals that two-dimensional numerical simulation captures the main features of the observed convection flow.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


Sign in / Sign up

Export Citation Format

Share Document