scholarly journals INFLUENCE OF FRICTION COEFFICIENT BETWEEN THE CRUSHED MATERIAL AND THE CHEEK IN ONE-ROLL CRUSHER ON CRUSHING PROCESS ENERGY CAPACITY

2017 ◽  
Vol 60 (10) ◽  
pp. 846-848 ◽  
Author(s):  
A. G. Nikitin ◽  
Yu. A. Epifantsev ◽  
K. S. Medvedeva ◽  
P. B. Gerike
2021 ◽  
Vol 2096 (1) ◽  
pp. 012022
Author(s):  
T Ripol-Saragosi ◽  
L Ripol-Saragosi

Abstract The research results presented in the article are devoted to the compressed air adsorption drying processes energy intensity reducing possibilities study. The investigation concerns the new adsorbent – composite. The material is considered as one of the most perspective at the present time. It’s ehergy efficiency is proved comparing traditional adsorbents such as silica gel, alumogel, zeolites, etc. The authors consider the bulk density as one of the factors at the adsorption process energy efficiency increase. The formulas given at the articles allow to calculate the different adsorbents bulk and apparent density, the compressor’s energy efficiency by using different adsorbents at pneumatic schemes, etc.


2019 ◽  
Vol 62 (4) ◽  
pp. 303-307
Author(s):  
A. G. Nikitin ◽  
Yu. A. Epifantsev ◽  
K. S. Medvedeva ◽  
P. B. Gerike

The processing of friable materials used in metallurgical industry for production of definite size classes requires operation of crushing machines, including single-roll machines. Parameters of crushing process are degree and efficiency of crushing. The crushing degree is estimated by the ratio of dimensions of the initial crushing and resulting pieces and depends on the size of gap between the roll and the fixed jaw. Crushing efficiency is determined by mass of material crushed by consumed electric energy unit, and depends mainly on strength of crushed material. In order to reduce energy consumption needed for crushing, a single-roll crusher was developed at Siberian State Industrial University with forced feeding of crushing piece into the fracture zone due to the locker located on the roll. Forces of technological resistance appearing during machine operation are the main initial values for machine drive power and structural elements strength testing, thus, the operation power analysis is an integral stage in the design of any machine, including a crushing one. In the present work, forces acting on a crushing piece from roll side and fixed jaw in vertical and horizontal planes are identified. Based on the results obtained, it was determined that internal compressive forces acting on piece of crushing material cause action of normal compressive stresses in a piece, as well as an internal torque effect, which causes shearing stresses action, i.e. a complex stress state is generated in a fractioned piece with simultaneous action of normal and shearing stresses, under which action a fractioning piece is destroyed. Thus reduction in energy consumption for crushing is achieved, with all other conditions being equal. It reduces energy consumption of a single-roll crusher with forced feeding of material into the crushing zone.


2017 ◽  
Vol 137 (8) ◽  
pp. 596-597
Author(s):  
Kenta Koiwa ◽  
Kenta Suzuki ◽  
Kang-Zhi Liu ◽  
Tadanao Zanma ◽  
Masashi Wakaiki ◽  
...  

1985 ◽  
Vol 55 ◽  
Author(s):  
J-P. Hirvonen ◽  
M. Nastasi ◽  
J. R. Phillips ◽  
J. W. Mayer

ABSTRACTMultilayered samples of Ti-Pd with linearly varying compositions were irradiated by Xe ions at 600 keV. The induced microstructures were studied by using transmission electron microscopy and Rutherford backscattering. Mixing was found to be complete over the entire composition range, resulting in amorphous or amorphous plus crystalline structures except at the palladium-rich end, where a crystalline Pd-Ti solid solution was obtained. This is consistent with the high equilibrium solubility of Ti in Pd. In addition, significant coarsening of the microstructure caused by irradiation was found in this solid solution region.Friction measurements were carried out in air and water by using a polytetrafluoroethylene pin as a counterpart. In air the friction coefficient was independent of composition and microstructure after about 2000 passes. In water, however, after 600 passes the friction coefficient reached a steady-state value with a pronounced minimum over the amorphous region. This property was unchanged throughout the remaining 10000 passes.


1986 ◽  
Vol 14 (1) ◽  
pp. 44-72 ◽  
Author(s):  
C. M. Mc C. Ettles

Abstract It is proposed that tire-pavement friction is controlled by thermal rather than by hysteresis and viscoelastic effects. A numerical model of heating effects in sliding is described in which the friction coefficient emerges as a dependent variable. The overall results of the model can be expressed in a closed form using Blok's flash temperature theory. This allows the factors controlling rubber friction to be recognized directly. The model can be applied in quantitative form to metal-polymer-ice contacts. Several examples of correlation are given. The difficulties of characterizing the contact conditions in tire-pavement friction reduce the model to qualitative form. Each of the governing parameters is examined in detail. The attainment of higher friction by small, discrete particles of aluminum filler is discussed.


2020 ◽  
Vol 2 ◽  
pp. 121-129 ◽  
Author(s):  
I.I. Basyrov ◽  
◽  
A.D. Bardovsky ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document