scholarly journals NEUROTOXIC EFFECT OF ACETYLCHOLINESTERASE INHIBITORS ON THE ORGANISM OF THE FREE-LIVING SOIL NEMATODE CAENORHABDITIS ELEGANS MAUPAS

Author(s):  
Анастасия Васильевна Егорова ◽  
Татьяна Борисовна Калинникова ◽  
Диляра Махмутриевна Хакимова ◽  
Рифгат Роальдович Шагидуллин ◽  
Anastasia Egorova ◽  
...  
2003 ◽  
Vol 66 (9) ◽  
pp. 1543-1549 ◽  
Author(s):  
GARY L. ANDERSON ◽  
KRISHAUN N. CALDWELL ◽  
LARRY R. BEUCHAT ◽  
PHILLIP L. WILLIAMS

Free-living nematodes may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. These nematodes are potential vectors for human pathogens and may play a role in foodborne diseases associated with fruits and vegetables eaten raw. In this study, we evaluated the associations between a free-living soil nematode, Caenorhabditis elegans, and Escherichia coli, an avirulent strain of Salmonella Typhimurium, Listeria welshimeri, and Bacillus cereus. On an agar medium, young adult worms quickly moved toward colonies of all four bacteria; over 90% of 3-day-old adult worms entered colonies within 16 min after inoculation. After 48 h, worms moved in and out of colonies of L. welshimeri and B. cereus but remained associated with E. coli and Salmonella Typhimurium colonies for at least 96 h. Young adult worms fed on cells of the four bacteria suspended in K medium. Worms survived and reproduced with the use of nutrients derived from all test bacteria, as determined for eggs laid by second-generation worms after culturing for 96 h. Development was slightly slower for worms fed gram-positive bacteria than for worms fed gram-negative bacteria. Worms that fed for 24 h on bacterial lawns formed on tryptic soy agar dispersed bacteria over a 3-h period when they were transferred to a bacteria-free agar surface. The results of this study suggest that C. elegans and perhaps other free-living nematodes are potential vectors for both gram-positive and gram-negative bacteria, including foodborne pathogens in soil.


2008 ◽  
Vol 422 (1) ◽  
pp. 321-323
Author(s):  
T. B. Kalinnikova ◽  
A. Kh. Timoshenko ◽  
D. Yu. Galaktionova ◽  
T. M. Gainutdinov ◽  
M. Kh. Gainutdinov

Development ◽  
1986 ◽  
Vol 97 (Supplement) ◽  
pp. 31-44
Author(s):  
Einhard Schierenberg

How the complex, multicellular structure of an organism is generated from the information contained in the uncleaved egg is a central question in developmental studies. Nematodes are particularly suitable for studying this question. A unique combination of favourable properties, including transparent eggshell, normal embryogenesis under the microscope outside the mother, small number of cells and rapid, reproducible development made nematodes classic models for developmental biologists (for reviews see Chitwood & Chitwood, 1974; von Ehrenstein & Schierenberg, 1980). In addition to the attractive features mentioned above, the free-living soil nematode Caenorhabditis elegans (Fig. 1) is also well suited for analysis of the genetic control of development (Brenner, 1974) unlike the classically studied parasitic nematode Parascaris equorum (Ascaris megalocephala). Recently cellular (e.g. Sulston, Schierenberg, White & Thomson, 1983) and genetic (e.g. Sternberg & Horvitz, 1984) aspects of development have been studied extensively in C. elegans.


2000 ◽  
Vol 203 (16) ◽  
pp. 2467-2478 ◽  
Author(s):  
W.A. Van Voorhies ◽  
S. Ward

This study examined the effects of oxygen tensions ranging from 0 to 90 kPa on the metabolic rate (rate of carbon dioxide production), movement and survivorship of the free-living soil nematode Caenorhabditis elegans. C. elegans requires oxygen to develop and survive. However, it can maintain a normal metabolic rate at oxygen levels of 3.6 kPa and has near-normal metabolic rates at oxygen levels as low as 2 kPa. The ability to withstand low ambient oxygen levels appears to be a consequence of the small body size of C. elegans, which allows diffusion to supply oxygen readily to the cells without requiring any specialized respiratory or metabolic adaptations. Thus, the small size of this organism pre-adapts C. elegans to living in soil environments that commonly become hypoxic. Movement in C. elegans appears to have a relatively minor metabolic cost. Several developmental stages of C. elegans were able to withstand up to 24 h of anoxia without major mortality. Longer periods of anoxia significantly increased mortality, particularly for eggs. Remarkably, long-term exposure to 100 % oxygen had no effect on the metabolic rate of C. elegans, and populations were able to survive for a least 50 generations in 100 % (90 kPa) oxygen. Such hyperoxic conditions are fatal to most organisms within a short period.


Sign in / Sign up

Export Citation Format

Share Document