scholarly journals THE EFFECT OF LOW TEMPERATURE AND CADMIUM ON THE PHOTORESPIRATION RATE OF WHEAT SEEDLINGS

Author(s):  
Екатерина Станиславовна Холопцева ◽  
Вера Викторовна Таланова ◽  
Ekaterina Kholoptseva ◽  
Vera Talanova
2021 ◽  
Vol 68 (5) ◽  
pp. 867-872
Author(s):  
M. S. Khristin ◽  
T. N. Smolova ◽  
V. D. Kreslavski

Abstract The dynamics of changes in the photochemical activity of photosystem II (PSII) and low-temperature spectra at 77 K in the first leaves of 11-day winter wheat plants Triticum aestivum L., as well as structural changes in chlorophyll-protein complexes (CPC) of thylakoid membranes during recovery after a short-term (20 min) heating at a temperature of 42°C, were studied. Changes in the Fv/Fm, F735/F695, and F735/F685 ratios indicate inhibition of PSII immediately after heating. Using nondenaturing electrophoresis, it was shown that the light-harvesting Chl a/b complex of PSII does not aggregate immediately after heating but after several hours, after 6 h the desagregation of CPC was observed, which was consistent with an increase in the Fv/Fm ratio upon recovery. The influence of temperature, intensity, and quality of light (white, blue, and red light) on the recovery of PSII activity and low-temperature fluorescence spectra was studied. It was concluded that the recovery is a photo-activated low-energy process, independent of photosynthesis, and the most effective in blue light.


2019 ◽  
Vol 66 (5) ◽  
pp. 763-770
Author(s):  
N. M. Kaznina ◽  
Yu. V. Batova ◽  
G. F. Laidinen ◽  
E. G. Sherudilo ◽  
A. F. Titov

1974 ◽  
Vol 52 (12) ◽  
pp. 2539-2546 ◽  
Author(s):  
C. J. Andrews ◽  
M. K. Pomeroy ◽  
I. A. de la Roche

Seedlings of winter wheat (Triticum aestivwn cv. Rideau and Cappelle Desprez) grown on moist filter paper in petri plates in dark at low temperature increased in cold hardiness, as measured by changes in the LD50 temperatures. Rideau attained an LD50 temperature of −12 °C after 5 weeks, Cappelle Desprez, −6 °C. Exposure to light delayed the maximum hardiness by 2 weeks and increased it by 6 °C in both cultivars. Exposure to diurnal freezing temperature increased hardiness of both cultivars in the dark, and in light when excessive dehydration was prevented.Greater cold hardiness of plants of both cultivars was attained in soil in light at low temperature as compared with those in petri plates. Exposure of plants to diurnal freezing temperature maintained a higher level of hardiness after the maximum at 7 weeks than continuous low temperature without freezing. Diurnal freezing during active low temperature growth in petri plates or in soil increased hardiness of Rideau seedlings to an apparent maximum of −18 °C.


2008 ◽  
Vol 56 (2) ◽  
pp. 113-127 ◽  
Author(s):  
S. Sabeva ◽  
D. Nedeva

The response of the antioxidant enzymes peroxidase [EC 1.11.1.11], superoxide dismutase (SOD) [EC 1.15.1.1] and catalase [EC 1.11.1.6] to dehydration stress caused by low and high temperature, salinity (0.2 M NaCl) and hyperosmoticum (0.5 M sucrose), as well as to exogenous ABA and H 2 O 2 , was examined in germinating wheat seeds. The data presented here confirm and complete previous results for other stages of wheat seedling development (Bakalova et al., 2004; 2007). Catalase was the most susceptible antioxidant enzyme under the chronic stress conditions applied. Its activity correlated closely to the decrease in the growth rate of wheat seedlings. Low temperature had the strongest effect of all the stress factors applied. There was a significant decrease in anionic peroxidase activity, accompanied by catalase inhibition, after low temperature treatment. An analysis of all the data obtained revealed that the treatments had mostly non-specific effects on gene expression, protein and enzyme profiles. Catalase and peroxidase activity were suppressed not only by low temperature, but by hyperosmoticum (0.5 M sucrose) as well. This result confirmed findings that a significant number of genes induced by one particular stress are also upregulated by other stresses (Kreps et al., 2002; Munns, 2002; Rabbani et al., 2003).


2017 ◽  
Vol 37 (1) ◽  
pp. 199-219 ◽  
Author(s):  
Anna Janeczko ◽  
Jolanta Biesaga-Kościelniak ◽  
Michał Dziurka ◽  
Maria Filek ◽  
Katarzyna Hura ◽  
...  

Abstract Understanding of the physiological role of mammalian hormone—androstenedione (AN)—in plants is scant and the mechanisms of its action at a cellular level are practically unknown. The aim of this study was to investigate the physicochemical and biochemical background of AN activity in winter wheat exposed to low temperature. Cold periods are important in the lifecycle of this species as they induce frost resistance and further generative development. Wheat seedlings (control and AN-supplemented) were acclimated 2 weeks in cold and then exposed to frost (−12 °C). AN supplementation reduced frost damages by 30%. Moreover, AN also accelerated generative development of wheat. The AN-induced changes in redox homeostasis seemed to be important for processes of acclimation to low temperature and generative induction. AN influenced hormonal balance in wheat and stimulated accumulation among other gibberellins and cytokinins. For example, in aerial part of plants, the content of GA3 was increased by AN in 12 days of cold by about 30%, whereas the content of cis-zeatin was increased by 65%. AN was absorbed into plant membranes (Langmuir bath studies). The membrane absorption of AN increased the distance between lipid molecules and this may be an important step in the AN-induced enhancement of frost resistance. AN interaction with lipid membranes showed similarity to the interactions of some known regulators stimulating flowering in plants, and thus it may also underlie the acceleration of wheat development. Androstenedione was naturally present in wheat leaves (5–21 pg g−1 FW).


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 62 ◽  
Author(s):  
Hui Li ◽  
Huawei Li ◽  
Yanjie Lv ◽  
Yongjun Wang ◽  
Zongshuai Wang ◽  
...  

Low temperature limits the photochemical efficiency of photosystems in wheat plants. To test the effect of salt priming on the photosynthetic electron transport in wheat under low temperature, the germinating seeds of a winter wheat cv. Jimai44 were primed with varying concentrations of NaCl solutions (0, 10, 30, and 50 mM NaCl, indicated by S0, S10, S30, and S50, respectively) for 6 d, and after 11 d of recovery, the seedlings were subsequently exposed to 24-h low-temperature stress (2 °C). Under low temperature, the S30 plants possessed the highest absorption flux per reaction center and higher density of reaction center per cross-section among the treatments. In addition, S30 plants had higher trapped energy flux for reducing QA and fraction of QA-reducing reaction centers and non-QB reducing center than the non-primed plants under low temperature, indicating that S30 plants could maintain the energy balance of photosystems and a relatively higher maximum quantum efficiency of photosystem II under low temperature. In addition, the low temperature-induced MDA accumulation and cell death were alleviated by salt priming in S30 plants. It was suggested that salt priming with an optimal concentration of NaCl solution (30 mM) during seed germination enhanced the photochemical efficiency of photosystems in wheat seedlings, which could be a potential approach to improve cold tolerance in wheat at an early stage.


Steroids ◽  
2017 ◽  
Vol 128 ◽  
pp. 37-45 ◽  
Author(s):  
Maria Filek ◽  
Elżbieta Rudolphi-Skórska ◽  
Apolonia Sieprawska ◽  
Miroslav Kvasnica ◽  
Anna Janeczko

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1421
Author(s):  
Natalia Repkina ◽  
Anna Ignatenko ◽  
Ekaterina Holoptseva ◽  
Zbigniew MiszalskI ◽  
Paweł Kaszycki ◽  
...  

Methyl jasmonate (MJ) is an important plant growth regulator that plays a key role in tolerance to biotic and abiotic stresses. In this research, the effects of exogenous MJ on cold tolerance, photosynthesis, activity and gene expression of antioxidant enzymes, proline accumulation, and expression of cold-regulated (COR) genes in wheat seedlings under low temperature (4 °C) were investigated. Exogenous MJ treatment (1 µM) promoted wheat cold tolerance before and during cold exposure. Low temperature significantly decreased photosynthetic parameters, whereas MJ application led to their partial recovery under cold exposure. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels increased in response to low temperature, and this was counteracted by MJ application. Exogenous MJ significantly enhanced the activities of antioxidant enzymes and upregulated the expression of MnSOD and CAT during cold exposure. MJ application also led to enhanced proline content before 4 °C exposure, whereas the P5CS gene expression was upregulated by MJ’s presence at both normal (22 °C) and low (4 °C) temperatures. It was also shown that MJ tended to upregulate the expression of the COR genes WCS19 and WCS120 genes. We conclude that exogenous MJ can alleviate the negative effect of cold stress thus increasing wheat cold tolerance.


Sign in / Sign up

Export Citation Format

Share Document