scholarly journals CRYSTALLOGRAPHIC STRUCTURE AND MAGNETIC PROPERTIES OF PSEUDOBROOKITE Fe2-XNiXTiO5 SYSTEM (x = 0, 0.1, 0.2, 0.3, 0.5 and 1)

2018 ◽  
Vol 19 (2) ◽  
pp. 47
Author(s):  
Yosef Sarwanto ◽  
Wisnu Ari Adi

Crystallographic structure and magnetic properties of pseudobrookite Fe2-xNixTiO5 system (x = 0, 0.1, 0.2, 0.3, 0.5 and 1) have been performed through solid state reaction. Pseudobrookite Fe2-xNixTiO5 system was synthesized by mixing of Fe2O3, NiO, and TiO2 with stoichiometry composition using wet mill. The mixture was milled for 5 hours and sintered in the electric chamber furnace at 1000 oC in the air at atmosphere pressure for 5 hours. The refinement against of X-ray diffraction data shows that the sampless with composition of (x = 0) and (x = 0.1) have a single phase with Fe2TiO5 structure. However the samples with composition of (x > 0.1) consist of multiple phases, namely Fe2-xNixTiO5, FeTiO3, Fe2NiO4 and NiO. Particle morphologies of the composition x = 0 and x = 0.1 are homogenous and uniform on the sample surface with a polygonal particle shape and particle size varies. At room temperature, the sample with x=0 is paramagnetic and that with x=0.1 is ferromagnetic. Magnetic phase transformation of this study is the caused by the present of Ni substituted Fe in the system. Thus substitution Ni into Fe on the system pseudobrookite Fe2TiO5 only capable of 0.1 at.% without changing the crystal structure of the material. It means that there is an interaction between the magnetic spin Fe3+ on the 3d5 configurations and Ni2+ on the 3d3 configurations through the mechanism of double exchange. Double exchange mechanism is a magnetic type of exchange that appears between the ions Fe3+ and Ni2+ adjacent in different oxidation states.

2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


2012 ◽  
Vol 29 (1) ◽  
pp. 50
Author(s):  
D.N Ba ◽  
L.T Tai ◽  
N.T Trung ◽  
N.T Huy

The influences of the substitution of Ni with Mg on crystallographic and magnetic properties of the intermetallic alloys LaNi5-xMgx (x ≤ 0.4) were investigated. The X-ray diffraction patterns showed that all samples were of single phase, and the lattice parameters, a and c, decreased slightly upon chemical doping. LaNi5 is well known as an exchange-enhanced Pauli paramagnet. Interestingly, in LaNi5-xMgx, the ferromagnetic order existed even with a small amount of dopants; the Curie temperature reached the value of room temperature for x = 0.2, and enhanced with increasing x.


2018 ◽  
Vol 197 ◽  
pp. 02007
Author(s):  
Erfan Handoko ◽  
Anggoro B S ◽  
Iwan Sugihartono ◽  
Mangasi AM ◽  
Dini Siti Nurwulan ◽  
...  

In In this study to understand the substitutional effect of Co-Zn on structural and magnetic properties of the BaFe12-2xCoxZnxO19 M-type hexagonal ferrites with concentration (x= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by the ceramic method. The results of x-ray diffraction show polycrystalline with single phase. Scanning electron microscopy micrographs shows the hexagonal ferrites that are composed of small particles with large porosity, roughly of spherical shapes. The substitution of Fe3+ ion by Co2+ and Zn2+ has changed magnetic properties of hexagonal ferrites.


2011 ◽  
Vol 335-336 ◽  
pp. 934-939
Author(s):  
Z. F. Zi ◽  
Y. N. Liu ◽  
Q.C. Liu ◽  
Jian Ming Dai ◽  
Yu Ping Sun

Magnetite (Fe3O4) nanobranches were synthesized using an improved solvothermal technique in mixed ethanol and water solvent. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was single-phase spinel structure. The results of scanning electronic microscopy exhibited that the grains were regular like-branch with sizes from 3 to 6 μm in length and in diameter between 50 and 200 nm. The composition determined by energy dispersive spectroscopy was very close to the stoichiometry of Fe3O4. The saturation magnetizations (Ms) at 10 and 300 K of the synthesized Fe3O4nanobranches were much lower than the theoretical values. On one hand, it could be explained by obstructive magnetizing along their non-easy magnetic axes by the shape anisotropy of Fe3O4nanobranches, on the other hand, lesserMscan also be understood by the existence of antisite defects.


Author(s):  
Arif Budiman ◽  
Dwi Puryanti ◽  
Sri Mulyadi Dt. Basa ◽  
Muhammad Rizki ◽  
Helfi Syukriani

<p><strong>Abstract:</strong> The synthesis and characterization of the crystal structure and magnetic properties of strontium ferrite magnets (SrO.6Fe<sub>2</sub>O<sub>3</sub>) has been done. Hematite (Fe<sub>2</sub>O<sub>3</sub>) is synthesized from iron sand of Batang Sukam Sijunjung Sumatera Barat through the oxidation process by temperature 700ºC for 3.0 hours. Strontium carbonate (SrCO<sub>3</sub>) was obtained from Merck product with a purity of more than 99%. Synthesis of strontium ferrite magnets are made through a process of solid-solid mixing and sintering at a temperature of 1000ºC for 3.0 hours. The results of characterization of X-ray diffraction indicates that it has formed a single phase strontium ferrite magnets with a hexagonal crystal structure. The result of measurement of the magnetic properties shows that an average magnetic susceptibility of strontium ferrite magnet is 266.7 × 10<sup>-8 </sup>m<sup>3</sup> /kg.</p><p> </p><p><strong>Keywords</strong>: strontium ferrite magnet, iron sand, crystal structure and magnetic susceptibility.</p><p><strong> </strong></p><p><strong>Abstrak:</strong> Telah dilakukan sintesis dan karakterisasi struktur kristal dan sifat magnetik magnet stronsium ferit (SrO.6Fe<sub>2</sub>O<sub>3</sub>). Hematit (Fe<sub>2</sub>O<sub>3</sub>) disintesis daripasir besi Batang Sukam Kabupaten Sijunjung Sumatera Barat melalui proses oksidasi dengan temperatur 700ºC selama 3,0 jam. Stronsium karbonat (SrCO<sub>3</sub>) diperoleh dari produk Merck dengan kemurnian lebih dari 99 %. Sintesis magnet stronsium ferit dibuat melalui proses <em>solid-solid mixing</em> dan disintering pada suhu 1000ºC selama 3,0 jam. Hasil karakterisasi difraksi sinar-X menunjukkan bahwa telah terbentuk <em>single phase</em> magnet stronsium ferit dengan struktur kristal heksagonal. Hasil pengukuran sifat magnet menunjukkan bahwa magnet stronsium ferit memiliki suseptibilitas magnetik rata-rata 266,7 × 10<sup>-8</sup> m<sup>3</sup>/kg.</p><p> </p><p><strong>Kata Kunci:</strong> magnet stronsium ferit, pasir besi, struktur kristal dan suseptibilitas magnetik.</p>


2013 ◽  
Vol 12 (05) ◽  
pp. 1350031
Author(s):  
J. C. ZHOU ◽  
Y. Y. WANG ◽  
X. L. GONG ◽  
S. W. LI

CuInSe 2 (CIS)-based powders were successfully prepared by a facile refluxing reaction route using metal halides and Se / S powder as raw starting materials. The phase and crystallographic structure, morphology, chemical composition of the products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS). It is found that single phase CIS powders with chalcopyrite structure can be prepared in a relatively short time using triethylenetetramine as the solvent; the most suitable reaction temperature and time are 200°C, 1–2 h, respectively. CuIn ( S x Se 1-x)2 powders were also prepared by refluxing reaction route using the mixed solvent of triethylenetetramine–glycol (1:1, v/v). The characterizations showed that the CuIn ( S x Se 1-x)2 has single chalcopyrite phase, and the stoichiometric composition closely follows the primary mixed ratio. The morphology of CuIn ( S x Se 1-x)2 is close to spheres, and the particle sizes become distinctly smaller with the incorporation of S . A possible formation mechanism of CuInSe 2 was put forward and briefly discussed.


2011 ◽  
Vol 110-116 ◽  
pp. 1736-1740 ◽  
Author(s):  
Ju Hua Luo

Sr-ferrite powders were preparated by mechanochemical treatments using SrCO3 and Fe2O3 as raw materials. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM) were employed to evaluated the morphologies, structures and magnetic properties of samples. The results indicated that the starting mixture became amorphous stage after ball-milled for 30h, and single phase SrFe12O19 could be obtained after annealed at 900°C for 2h. And the saturation magnetization was 58.2Am2/kg, and coercivity was 281.2 kA/m at room temperature. In comparison with the traditional firing method , the mechanochemical method benefited achieving the higher coercivity, which indicated that the samples had a better magnetic properties.


2013 ◽  
Vol 789 ◽  
pp. 87-92 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Bambang Soegijono ◽  
M. Hikam

The formation of barium hexaferrite, BaFe12O19 single phase with nanosize crystalline is very important to get the best performance especially magnetic properties. The samples were prepared by sol gel method in citric acid-metal nitrates system. Hence the mole ratios of Ba2+/Fe3+ were varied at 1:12 and 1:11.5 with pH of 7 in all cases using ammonia solution. The solution was then heated at 80-90°C for 3 to 4 hours. Then it was kept on a pre-heated oven at 150°C. The samples were then heat treated at 450°C for 24 hours. Sintering process was done at 850°C and 1000°C for 10 hours.Crystallite size was calculated by X-Ray Diffraction (XRD) peaks using scherrer formula. To confirm the formation of a single phase, XRD analyses were done by comparing the sample patterns with standard pattern. The peak shifting of pattern could be seen from XRD pattern using rocking curves at extreme certain 2θ. It was used MPS Magnet Physik EP3 Permagraph L to know magnetic characteristics. This method can produce BaFe12O19 nanosize powder, 22-34 nm for crystallite size and 55.59-78.58 nm for particle size. A little diference in nanosize affects the peak shifting of XRD pattern significantly but shows a little difference in magnetic properties especially for samples at 850°C and 1000°C with mole ratio of 1:12 respectively. The well crystalline powder is formed at mole ratio of 1:11.5 at 850°C since it has the finest particle (55.59 nm) and crystalline (21 nm), the highest remanent magnetization (0.161 T) and the lowest intrinsic coersive (275.8 kA/m). It is also fitting exactly to the standard diffraction pattern with the highest value of best Figure of Merit (FoM), 90%. XRD peak position of this sample is almost same with XRD peak position of another sample with sinter temperature 1000°C at same mole ratio.


2012 ◽  
Vol 510-511 ◽  
pp. 343-347
Author(s):  
S. Nasir ◽  
M.A. Malik ◽  
G. Asghar ◽  
G.H. Tariq ◽  
M. Akram ◽  
...  

Ni-Zn ferrite nanoparticles with Cr doping, having the general formula Ni0.5Zn0.5CrxFe2-xO4(x = 0.1, 0.3, 0.5) were prepared by simplified sol-gel method and sintered at 750±5°C. The structural and magnetic properties of the samples sintered at 750±5°C were studied. From X-ray diffraction (XRD) patterns, it was confirmed that the samples have single phase spinel structure. The crystallite size was calculated from the most intense peak (3 1 1) using the Debye Scherrer formula and was found to be in the range of 29-34 nm. The scanning electron microscope images showed that the particle size of the samples were in the range 60-120nm. Quantum design PPMS model 6700 was used to study magnetic properties of these samples. The effect of Cr doping on the magnetic properties was explained on the basis of cations distribution in the crystal structure.


2011 ◽  
Vol 239-242 ◽  
pp. 3109-3112 ◽  
Author(s):  
Qin Zhang ◽  
Qing Wang ◽  
Zhen Cui Sun ◽  
Ke Yan Wang

Rare-earth-doped compounds (Sr1.85Ln0.15)FeMoO6(Ln=Sr, La, Ce, Pr, Nd, Sm and Eu) have been prepared by solid-state reaction. Crystal structure and magnetic properties were investigated by means of X-ray diffraction and magnetic measurements. All the samples are single phase and belong to the I4/m space group. Due to the competing contributions of electron doping and steric effects, the unit-cell volume of the doped compounds changes slightly and does not vary systematically with the ionic radius of the rare-earth ions. The temperature dependence of the magnetization of (Sr1.85Ln0.15)FeMoO6indicates that the Curie temperature of the doped compounds has increased upon doping, except for the Eu-doped compound.


Sign in / Sign up

Export Citation Format

Share Document