scholarly journals Expression of microRNAs in the hypothalamus of pregnant and non-pregnant goats

2021 ◽  
Vol 66 (No. 5) ◽  
pp. 156-167
Author(s):  
Lu Zhu ◽  
Jingtong Huang ◽  
Jing Jing ◽  
Qi Zheng ◽  
Qianyun Ji ◽  
...  

MicroRNAs (miRNAs) play a significant role in animal reproduction by regulating the expression of protein-coding genes. The hypothalamus regulates the pregnancy cycle changes in goats; however, the action mechanism of miRNAs in this regulation remains to be investigated. In this study, we performed RNA sequencing of hypothalamus samples to establish a comprehensive miRNA profiling of pregnant and non-pregnant goats. A total of 384 miRNAs were identified in the hypothalamus of pregnant goats, of which 239 were newly discovered, and 390 miRNAs were detected in the hypothalamus of non-pregnant goats of which 192 were novel miRNAs. In addition, a total of 280 differentially expressed miRNAs are characterized, of which 171 were known miRNAs and 109 were novel miRNAs. Functional enrichment suggests that the predicted target genes of differentially expressed miRNAs may be involved in the reproductive process. This preliminary study revealed that let-7f-5p, miR-99a-5p and miR-100-5p may be involved in the hypothalamic regulation of pregnancy cycle changes in goats. These data provide a basic reference for subsequent studies on the regulatory role of miRNAs in mammalian pregnancy.

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Yibing Liu ◽  
Fengxia Zhang ◽  
Zhen Tan ◽  
...  

Fatty traits are very important in pig production. However, the role of microRNAs (miRNAs) in fat deposition is not clearly understood. In this study, we compared adipose miRNAs from three full-sibling pairs of female Landrace pigs, with high and low backfat thickness, to investigate the associated regulatory network. We obtained an average of 17.29 million raw reads from six libraries, 62.27% of which mapped to the pig reference genome. A total of 318 pig miRNAs were detected among the samples. Among them, 18 miRNAs were differentially expressed (p-value < 0.05, |log2fold change| ≥ 1) between the high and low backfat groups; 6 were up-regulated and 12 were down-regulated. Functional enrichment of the predicted target genes of the differentially expressed miRNAs, indicated that these miRNAs were involved mainly in lipid and carbohydrate metabolism, and glycan biosynthesis and metabolism. Comprehensive analysis of the mRNA and miRNA transcriptomes revealed possible regulatory relationships for fat deposition. Negatively correlated mRNA–miRNA pairs included miR-137–PPARGC1A, miR-141–FASN, and miR-122-5p–PKM, indicating these interactions may be key regulators of fat deposition. Our findings provide important insights into miRNA expression patterns in the backfat tissue of pig and new insights into the regulatory mechanisms of fat deposition in pig.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2917
Author(s):  
Qiaoxin Wang ◽  
Xiaohui Li ◽  
Hang Sha ◽  
Xiangzhong Luo ◽  
Guiwei Zou ◽  
...  

Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA is a kind of endogenous non-coding single-stranded small RNA, which is involved in cell development, and immune response and gene expression regulation. In this study, silver carp were kept in the closed containers for hypoxia treatment by spontaneous oxygen consumption. The samples of heart, brain, liver and gill were collected, and the total RNAs extracted separately from the four tissues were mixed in equal amounts according to the concentration. Afterwards, the RNA pool was constructed for high-throughput sequencing, and based on the small RNA sequencing, the differentially expressed microRNAs were identified. Furthermore, their target gene prediction and enrichment analyses were carried out. The results showed that a total of 229 known miRNAs and 391 putative novel miRNAs were identified, which provided valuable resources for further study on the regulatory mechanism of miRNAs in silver carp under hypoxia stress. The authors verified 16 differentially expressed miRNAs by qRT-PCR, and the results were consistent with small RNA sequencing (sRNA-seq). The predicted target genes number of differentially expressed miRNAs was 25,146. GO and KEGG functional enrichment analysis showed that these target genes were mainly involved in the adaption of hypoxia stress in silver carp through biological regulation, catalytic activity and apoptosis. This study provides references for further study of interaction between miRNAs and target genes, and the basic data for the response mechanism under hypoxia stress in silver carp.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianqi Xia ◽  
Bikash Ranjan Giri ◽  
Jingyi Liu ◽  
Pengfei Du ◽  
Xue Li ◽  
...  

Abstract Background Schistosomiasis is a chronic, debilitating infectious disease caused by members of the genus Schistosoma. Previous findings have suggested a relationship between infection with Schistosoma spp. and alterations in the liver and spleen of infected animals. Recent reports have shown the regulatory role of noncoding RNAs, such as long noncoding RNAs (lncRNAs), in different biological processes. However, little is known about the role of lncRNAs in the mouse liver and spleen during Schistosoma japonicum infection. Methods In this study, we identified and investigated lncRNAs using standard RNA sequencing (RNA-Seq). The biological functions of the altered expression of lncRNAs and their target genes were predicted using bioinformatics. Ten dysregulated lncRNAs were selected randomly and validated in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) experiments. Results Our study identified 29,845 and 33,788 lncRNAs from the liver and spleen, respectively, of which 212 were novel lncRNAs. We observed that 759 and 789 of the lncRNAs were differentially expressed in the respective organs. The RT-qPCR results correlated well with the sequencing data. In the liver, 657 differentially expressed lncRNAs were predicted to target 2548 protein-coding genes, whereas in the spleen 660 differentially expressed lncRNAs were predicted to target 2673 protein-coding genes. Moreover, functional annotation showed that the target genes of the differentially expressed lncRNAs were associated with cellular processes, metabolic processes, and binding, and were significantly enriched in metabolic pathways, the cell cycle, ubiquitin-mediated proteolysis, and pathways in cancer. Conclusions Our study showed that numerous lncRNAs were differentially expressed in S. japonicum-infected liver and spleen compared to control liver and spleen; this suggested that lncRNAs may be involved in pathogenesis in the liver and spleen during S. japonicum infection.


Author(s):  
Chia-Ter Chao ◽  
Hsiang-Yuan Yeh ◽  
You-Tien Tsai ◽  
Chih-Kang Chiang ◽  
Huei-Wen Chen

Abstract Aims  Vascular calcification (VC) increases the future risk of cardiovascular events in uraemic patients, but effective therapies are still unavailable. Accurate identification of those at risk of developing VC using pathogenesis-based biomarkers is of particular interest and may facilitate individualized risk stratification. We aimed to uncover microRNA (miRNA)-target protein-based biomarker panels for evaluating uraemic VC probability and severity. Methods and results  We created a three-tiered in vitro VC model and an in vivo uraemic rat model receiving high phosphate diet to mimic uraemic VC. RNAs from the three-tiered in vitro and in vivo uraemic VC models underwent miRNA and mRNA microarray, with results screened for differentially expressed miRNAs and their target genes as biomarkers. Findings were validated in original models and additionally in an ex vivo VC model and human cells, followed by functional assays of identified miRNAs and target proteins, and tests of sera from end-stage renal disease (ESRD) and non-dialysis-dependent chronic kidney disease (CKD) patients without and with VC. Totally 122 down-regulated and 119 up-regulated miRNAs during calcification progression were identified initially; further list narrowing based on miRNA–mRNA pairing, anti-correlation, and functional enrichment left 16 and 14 differentially expressed miRNAs and mRNAs. Levels of four miRNAs (miR-10b-5p, miR-195, miR-125b-2-3p, and miR-378a-3p) were shown to decrease throughout all models tested, while one mRNA (SULF1, a potential target of miR-378a-3p) exhibited the opposite trend concurrently. Among 96 ESRD (70.8% with VC) and 59 CKD patients (61% with VC), serum miR-125b2-3p and miR-378a-3p decreased with greater VC severity, while serum SULF1 levels increased. Adding serum miR-125b-2-3p, miR-378a-3p, and SULF1 into regression models for VC substantially improved performance compared to using clinical variables alone. Conclusion  Using a translational approach, we discovered a novel panel of biomarkers for gauging the probability/severity of uraemic VC based on miRNAs/target proteins, which improved the diagnostic accuracy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Nie ◽  
Zongchao Liao ◽  
Minyi Zhong ◽  
Jie Zhou ◽  
Jiabang Cai ◽  
...  

Chromium (Cr) is a heavy metal in nature, which poses a potential risk to toxicity to both animals and plants when releasing into the environment. However, the regulation of microRNA (miRNA)-mediated response to heavy metal Cr has not been studied in Miscanthus sinensis. In this study, based on high-throughput miRNA sequencing, a total of 104 conserved miRNAs and 158 nonconserved miRNAs were identified. Among them, there were 45 differentially expressed miRNAs in roots and 13 differentially expressed miRNAs in leaves. The hierarchical clustering analysis showed that these miRNAs were preferentially expressed in a certain tissue. There were 833 differentially expressed target genes of 45 miRNAs in roots and 280 differentially expressed target genes of 13 miRNA in leaves. After expression trend analysis, five significantly enriched modules were obtained in roots, and three significantly enriched trend blocks in leaves. Based on the candidate gene annotation and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) function analysis, miR167a, novel_miR15, and novel_miR22 and their targets were potentially involved in Cr transportation and chelation. Besides, miR156a, miR164, miR396d, and novel_miR155 were identified as participating in the physiological and biochemical metabolisms and the detoxification of Cr of plants. The results demonstrated the critical role of miRNA-mediated responses to Cr treatment in M. sinensis, which involves ion uptake, transport, accumulation, and tolerance characteristics.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2397-2397
Author(s):  
Ran Weissman ◽  
Nir Pilar ◽  
Benjamin H Durham ◽  
Michelle Ki ◽  
Roei D Mazor ◽  
...  

Abstract Background: Erdheim-Chester disease (ECD) is a rare hematological malignancy, belonging to the L-group histiocytoses. ECD is characterized by multi-systemic proliferations of mature histiocytes in a background of inflammatory stroma. The inflammatory and neoplastic characteristics of the disease comprise a complex medical challenge for its diagnosis and treatment. MicroRNAs (miRNAs/miRs) are short non-coding RNAs (~22 nucleotides) that regulate gene expression in a sequence specific manner and play an important role in cancer development and progression. Since miRNAs are released into the blood by tumor cells, they may be used as biomarkers to distinguish between cancer patients and healthy individuals and to assist in determining treatment response. Moreover, miRNA-mRNA interactions can determine the molecular mechanism by which miRNAs and their target genes are involved in ECD and may suggest novel therapeutic options for these patients. To date, this is the first study elucidating the role of miRNA in ECD. Aims: The main focus of this study is to identify miRNAs that are differentially expressed in ECD patients compared to healthy controls and any clinical utility they have as potential biomarkers in ECD diagnosis, as well as to investigate their role in ECD pathogenesis, which may lead to new therapeutic options. Preliminary results: Using the nCounter Human miRNA Expression Assay (NanoString Technologies), we analyzed the plasma miRNA expression profiles of 6 ECD patients (BRAF V600E) compared to 6 healthy individuals. Of the 800 mature miRNAs analyzed, 234 miRNAs showed different expression levels in these samples. Principal component analysis (PCA) was applied to experimental quality control. The miRNAs from healthy donors were clustered separately from the ECD samples indicating a distinct miRNA expression pattern between these groups (Fig. 1A, 1B). Among the 131 miRNAs remaining in the final analysis (FDR<0.05),110 miRNAs were downregulated in ECD patients compared to those of healthy controls, and 21 miRNAs were upregulated in ECD samples compared to those of the controls. We validated the analysis method by quantitative real-time polymerase chain reaction (qRT-PCR) and found a positive correlation between miRs-15a, 16, 125a, 223, 21, 34a, 155 and miR-630 expression obtained by the NanoString array. This may indicate the potential use of miRNAs as biomarkers in ECD. To determine potential target genes and signaling pathways implicated in ECD, we analyzed the predicted pathways of the top 30 downregulated miRNAs that were differentially expressed between the two groups using the Ingenuity® Pathway Analysis (IPA) and DIANA-miRPath v3.0 database. Reassuringly, the analysis identified cancer, inflammatory disease, and inflammatory response (p<0.01) as the main disease and disorder related with the miRNA expression pattern, as well as oncogenic pathways such as MAPK, PI3K-AKT, RAS, ErbB, Hippo, and mTOR as the main molecular pathways related to the differentially-expressed miRNAs (p<0.009). This finding suggests that low expression of miRNAs results in up regulation of target genes that participate in cell survival signaling. These augmented pathways may be inhibited by novel therapeutic treatments such as PI3K inhibitors, mTOR pathway inhibitors, and MEK inhibitors in ECD patients. Next, we examined if there is any correlation between the predicted target genes of the miRNAs (obtained by IPA) and the experimentally validated gene expression pattern in ECD patients. To that end, we downloaded RNA-seq results of ECD patients from the GEO database (GSE74442 deposited by Diamond et al) and compared this list to our predicted miRNA targets in ECD patients, using Gene Set Enrichment Analysis (GSEA). We found a positive correlation between the gene expression reported in the literature and the predicted target of our deregulated miRNAs (Fig. 2), indicating that the predicted target genes are enriched in this data set, suggesting that the differentially expressed miRNAs might have a crucial role in the pathogenesis of ECD. Conclusions: Our preliminary data highlight the unique inflammatory and neoplastic features characteristic of ECD. These deregulated miRNAs may highlight new candidate gene targets allowing for a better understanding of the molecular mechanisms underlying the development of ECD and propose novel therapeutic treatments for these patients. Disclosures No relevant conflicts of interest to declare.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12710
Author(s):  
Hang Jie ◽  
Zhongxian Xu ◽  
Jian Gao ◽  
Feng Li ◽  
Yinglian Chen ◽  
...  

Background The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. Methods In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. Results We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.


2021 ◽  
Author(s):  
Hao Qu ◽  
Yue Liu ◽  
Huibing Jiang ◽  
Yufei Liu ◽  
Weixi Song ◽  
...  

Abstract Background miRNAs are a type of conserved, small RNA molecule that regulate gene expression and play an important role in the growth and development of plants. miRNAs are involved in seed germination, root development, shoot apical meristem maintenance, leaf development, and flower development by regulating various target genes. However, the role of miRNAs in the mechanism of tea tree flower sterility remains unclear. Therefore, we performed miRNA sequencing on the flowers of fertile male parents, female parents, and sterile offspring. Results A total of 55 known miRNAs and 91 unknown miRNAs were identified. In the infertile progeny, 37 miRNAs were differentially expressed; 18 were up-regulated and 19 were down-regulated. miR156, miR157, miR164, miR167, miR169, miR2111 and miR396 family members were down-regulated, and miR160, miR172 and miR319 family members were up-regulated. Moreover, we predicted that the 37 differentially expressed miRNAs target a total of 363 genes, which were enriched in 31 biological functions. We predicted that miR156 targets 142 genes, including ATD1A, SPL, ACA1, ACA2, CKB22 and MADS2. Conclusion We detected a large number of abnormally expressed miRNAs in the sterile tea tree flowers, and their target genes were involved in complex biological processes. Among these miRNAs, the down-regulation of miR156 may be the critical factor in the formation of sterile floral buds in tea tree plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Francavilla ◽  
Amedeo Gagliardi ◽  
Giulia Piaggeschi ◽  
Sonia Tarallo ◽  
Francesca Cordero ◽  
...  

AbstractFor their stability and detectability faecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. However, there is no evidence on how stool miRNA profiles change according to an individual’s age, sex, and body mass index (BMI) or how lifestyle habits influence the expression levels of these molecules. We explored the relationship between the stool miRNA levels and common traits (sex, age, BMI, and menopausal status) or lifestyle habits (physical activity, smoking status, coffee, and alcohol consumption) as derived by a self-reported questionnaire, using small RNA-sequencing data of samples from 335 healthy subjects. We detected 151 differentially expressed miRNAs associated with one variable and 52 associated with at least two. Differences in miR-638 levels were associated with age, sex, BMI, and smoking status. The highest number of differentially expressed miRNAs was associated with BMI (n = 92) and smoking status (n = 84), with several miRNAs shared between them. Functional enrichment analyses revealed the involvement of the miRNA target genes in pathways coherent with the analysed variables. Our findings suggest that miRNA profiles in stool may reflect common traits and lifestyle habits and should be considered in relation to disease and association studies based on faecal miRNA expression.


Sign in / Sign up

Export Citation Format

Share Document