scholarly journals Differential expression profiles of microRNAs in musk gland of unmated and mated forest musk deer (Moschus berezovskii)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12710
Author(s):  
Hang Jie ◽  
Zhongxian Xu ◽  
Jian Gao ◽  
Feng Li ◽  
Yinglian Chen ◽  
...  

Background The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. Methods In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. Results We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Yibing Liu ◽  
Fengxia Zhang ◽  
Zhen Tan ◽  
...  

Fatty traits are very important in pig production. However, the role of microRNAs (miRNAs) in fat deposition is not clearly understood. In this study, we compared adipose miRNAs from three full-sibling pairs of female Landrace pigs, with high and low backfat thickness, to investigate the associated regulatory network. We obtained an average of 17.29 million raw reads from six libraries, 62.27% of which mapped to the pig reference genome. A total of 318 pig miRNAs were detected among the samples. Among them, 18 miRNAs were differentially expressed (p-value < 0.05, |log2fold change| ≥ 1) between the high and low backfat groups; 6 were up-regulated and 12 were down-regulated. Functional enrichment of the predicted target genes of the differentially expressed miRNAs, indicated that these miRNAs were involved mainly in lipid and carbohydrate metabolism, and glycan biosynthesis and metabolism. Comprehensive analysis of the mRNA and miRNA transcriptomes revealed possible regulatory relationships for fat deposition. Negatively correlated mRNA–miRNA pairs included miR-137–PPARGC1A, miR-141–FASN, and miR-122-5p–PKM, indicating these interactions may be key regulators of fat deposition. Our findings provide important insights into miRNA expression patterns in the backfat tissue of pig and new insights into the regulatory mechanisms of fat deposition in pig.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


APOPTOSIS ◽  
2019 ◽  
Vol 25 (1-2) ◽  
pp. 73-91 ◽  
Author(s):  
Yi-Kai Pan ◽  
Cheng-Fei Li ◽  
Yuan Gao ◽  
Yong-Chun Wang ◽  
Xi-Qing Sun

AbstractWeightlessness-induced cardiovascular dysfunction can lead to physiological and pathological consequences. It has been shown that spaceflight or simulated microgravity can alter expression profiles of some microRNAs (miRNAs). Here, we attempt to identify the role of miRNAs in human umbilical vein endothelial cells (HUVECs) apoptosis under simulated microgravity. RNA-sequencing and quantitative real-time PCR (qRT-PCR) assays were used to identify differentially expressed miRNAs in HUVECs under simulated microgravity. Then we obtained the target genes of these miRNAs through target analysis software. Moreover, GO and KEGG enrichment analysis were performed. The effects of these miRNAs on HUVECs apoptosis were evaluated by flow cytometry, Western blot and Hoechst staining. Furthermore, we obtained the target gene of miR-27b-5p by luciferase assay, qRT-PCR and Western blot. Finally, we investigated the relationship between this target gene and miR-27b-5p in HUVECs apoptosis under normal gravity or simulated microgravity. We found 29 differentially expressed miRNAs in HUVECs under simulated microgravity. Of them, the expressions of 3 miRNAs were validated by qRT-PCR. We demonstrated that miR-27b-5p affected HUVECs apoptosis by inhibiting zinc fingers and homeoboxes 1 (ZHX1). Our results reported here demonstrate for the first time that simulated microgravity can alter the expression of some miRNAs in HUVECs and miR-27b-5p may protect HUVECs from apoptosis under simulated microgravity by targeting ZHX1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hai Lan Yao ◽  
Mi Liu ◽  
Wen Jun Wang ◽  
Xin Ling Wang ◽  
Juan Song ◽  
...  

AbstractMicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.


2019 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2018 ◽  
Author(s):  
yuanshuai Fu ◽  
Zhe Xu ◽  
Zaizhong Chen ◽  
Bin Wen ◽  
Jianzhong Gao

The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. Phenotype investigation indicated that there are no significant differences in appearance between males and females of the discus fish. To better understand the sexual development mechanisms and obtain a high efficiency sex identification method in the artificial reproduction process of the discus fish, we constructed six cDNA libraries from three adult testes and three adult ovaries, and perform RNA-sequencing for identifying sex-biased candidate genes, microRNA (miRNA), and metabolic pathway using the Illumina Hiseq 4000. A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries, and 8 differentially expressed unigenes were validated by quantitative Real-Time PCR (qPCR). A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries, and 7 differentially expressed miRNAs and one non-differential miRNA were validated by qPCR. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 important miRNA-mRNA interaction pairs, which may be important candidates for sex-related miRNAs and sex-related genes in the discus fish. Some of vital sex-related metabolic pathways were also identified that may play key roles in regulating gonad development of the discus fish. These results can provide important insights to better understand molecular mechanisms for sexual dimorphism in gonads development.


2021 ◽  
Vol 66 (No. 5) ◽  
pp. 156-167
Author(s):  
Lu Zhu ◽  
Jingtong Huang ◽  
Jing Jing ◽  
Qi Zheng ◽  
Qianyun Ji ◽  
...  

MicroRNAs (miRNAs) play a significant role in animal reproduction by regulating the expression of protein-coding genes. The hypothalamus regulates the pregnancy cycle changes in goats; however, the action mechanism of miRNAs in this regulation remains to be investigated. In this study, we performed RNA sequencing of hypothalamus samples to establish a comprehensive miRNA profiling of pregnant and non-pregnant goats. A total of 384 miRNAs were identified in the hypothalamus of pregnant goats, of which 239 were newly discovered, and 390 miRNAs were detected in the hypothalamus of non-pregnant goats of which 192 were novel miRNAs. In addition, a total of 280 differentially expressed miRNAs are characterized, of which 171 were known miRNAs and 109 were novel miRNAs. Functional enrichment suggests that the predicted target genes of differentially expressed miRNAs may be involved in the reproductive process. This preliminary study revealed that let-7f-5p, miR-99a-5p and miR-100-5p may be involved in the hypothalamic regulation of pregnancy cycle changes in goats. These data provide a basic reference for subsequent studies on the regulatory role of miRNAs in mammalian pregnancy.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Wei-xian Chen ◽  
Ling-yun Xu ◽  
Qi Qian ◽  
Xiao He ◽  
Wen-ting Peng ◽  
...  

A major cause of failure in chemotherapy is drug resistance of cancer cells. Exosomes have been introduced to spread chemoresistance through delivering miRNAs. However, a systematic evaluation of the exosomal miRNA expression profiles responsible for chemoresistance is still lacking. In the present study, miRNA signature differentially expressed in exosomes derived from adriamycin-resistant (A/exo) and parental breast cancer cells (S/exo) were analyzed by microarray and the results were confirmed by PCR. A total of 309 miRNAs were increased and 66 miRNAs were decreased significantly in A/exo compared with S/exo. Specifically, 52 novel miRNAs with increased expression levels >16.0-fold in A/exo were identified. After prediction of target genes for 13 of 52 selected novel miRNAs, pathway analysis, gene ontology (GO) terms, and protein–protein interactions (PPIs) were constructed. The results implied that these selected exosomal miRNAs inhibited target genes involved in transcriptional misregulation in cancer, MAPK, and Wnt signaling pathways. Functional enrichment analysis demonstrated that the target genes were mainly responsible for protein phosphorylation, transcription regulation, molecular binding, and kinase activity. In summary, the current bioinformatics study of exosomal miRNAs may offer a new understanding into mechanisms of chemoresistance, which is helpful to find potential exosomal miRNAs to overcome drug insensitivity in future breast cancer treatment.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Shi ◽  
Yao Shi ◽  
Ya Zhang ◽  
Xiaolan Liao

Abstract The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.


Sign in / Sign up

Export Citation Format

Share Document