scholarly journals The Role of microRNAs in the Pathogenesis of Erdheim-Chester Disease and Their Potential Use As Biomarkers for Diagnosis and Prognosis of the Disease

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2397-2397
Author(s):  
Ran Weissman ◽  
Nir Pilar ◽  
Benjamin H Durham ◽  
Michelle Ki ◽  
Roei D Mazor ◽  
...  

Abstract Background: Erdheim-Chester disease (ECD) is a rare hematological malignancy, belonging to the L-group histiocytoses. ECD is characterized by multi-systemic proliferations of mature histiocytes in a background of inflammatory stroma. The inflammatory and neoplastic characteristics of the disease comprise a complex medical challenge for its diagnosis and treatment. MicroRNAs (miRNAs/miRs) are short non-coding RNAs (~22 nucleotides) that regulate gene expression in a sequence specific manner and play an important role in cancer development and progression. Since miRNAs are released into the blood by tumor cells, they may be used as biomarkers to distinguish between cancer patients and healthy individuals and to assist in determining treatment response. Moreover, miRNA-mRNA interactions can determine the molecular mechanism by which miRNAs and their target genes are involved in ECD and may suggest novel therapeutic options for these patients. To date, this is the first study elucidating the role of miRNA in ECD. Aims: The main focus of this study is to identify miRNAs that are differentially expressed in ECD patients compared to healthy controls and any clinical utility they have as potential biomarkers in ECD diagnosis, as well as to investigate their role in ECD pathogenesis, which may lead to new therapeutic options. Preliminary results: Using the nCounter Human miRNA Expression Assay (NanoString Technologies), we analyzed the plasma miRNA expression profiles of 6 ECD patients (BRAF V600E) compared to 6 healthy individuals. Of the 800 mature miRNAs analyzed, 234 miRNAs showed different expression levels in these samples. Principal component analysis (PCA) was applied to experimental quality control. The miRNAs from healthy donors were clustered separately from the ECD samples indicating a distinct miRNA expression pattern between these groups (Fig. 1A, 1B). Among the 131 miRNAs remaining in the final analysis (FDR<0.05),110 miRNAs were downregulated in ECD patients compared to those of healthy controls, and 21 miRNAs were upregulated in ECD samples compared to those of the controls. We validated the analysis method by quantitative real-time polymerase chain reaction (qRT-PCR) and found a positive correlation between miRs-15a, 16, 125a, 223, 21, 34a, 155 and miR-630 expression obtained by the NanoString array. This may indicate the potential use of miRNAs as biomarkers in ECD. To determine potential target genes and signaling pathways implicated in ECD, we analyzed the predicted pathways of the top 30 downregulated miRNAs that were differentially expressed between the two groups using the Ingenuity® Pathway Analysis (IPA) and DIANA-miRPath v3.0 database. Reassuringly, the analysis identified cancer, inflammatory disease, and inflammatory response (p<0.01) as the main disease and disorder related with the miRNA expression pattern, as well as oncogenic pathways such as MAPK, PI3K-AKT, RAS, ErbB, Hippo, and mTOR as the main molecular pathways related to the differentially-expressed miRNAs (p<0.009). This finding suggests that low expression of miRNAs results in up regulation of target genes that participate in cell survival signaling. These augmented pathways may be inhibited by novel therapeutic treatments such as PI3K inhibitors, mTOR pathway inhibitors, and MEK inhibitors in ECD patients. Next, we examined if there is any correlation between the predicted target genes of the miRNAs (obtained by IPA) and the experimentally validated gene expression pattern in ECD patients. To that end, we downloaded RNA-seq results of ECD patients from the GEO database (GSE74442 deposited by Diamond et al) and compared this list to our predicted miRNA targets in ECD patients, using Gene Set Enrichment Analysis (GSEA). We found a positive correlation between the gene expression reported in the literature and the predicted target of our deregulated miRNAs (Fig. 2), indicating that the predicted target genes are enriched in this data set, suggesting that the differentially expressed miRNAs might have a crucial role in the pathogenesis of ECD. Conclusions: Our preliminary data highlight the unique inflammatory and neoplastic features characteristic of ECD. These deregulated miRNAs may highlight new candidate gene targets allowing for a better understanding of the molecular mechanisms underlying the development of ECD and propose novel therapeutic treatments for these patients. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 32 (12) ◽  
pp. 1067
Author(s):  
Wangsheng Zhao ◽  
Eugene Quansah ◽  
Meng Yuan ◽  
Pengcheng Li ◽  
Chuanping Yi ◽  
...  

MicroRNAs (miRNAs) have emerged as potent regulators of gene expression and are widely expressed in biological systems. In reproduction, they have been shown to have a significant role in the acquisition and maintenance of male fertility, whereby deletion of Dicer in mouse germ cells leads to infertility. Evidence indicates that this role of miRNAs extends from the testis into the epididymis, controlling gene expression and contributing to regional variations in gene expression. In this study, RNA sequencing technology was used to investigate miRNA expression patterns in the yak epididymis. Region-specific miRNA expression was found in the yak epididymis. In all, 683 differentially expressed known miRNAs were obtained; 190, 186 and 307 differentially expressed miRNAs were identified for caput versus corpus, corpus versus cauda and caput versus cauda region pairs respectively. Kyoto Encyclopedia of Genes and Genomes results showed endocytosis as the most enriched pathway across region pairs, followed by protein processing in the endoplasmic reticulum, phagosome, spliceosome and biosynthesis of amino acids in region pair-specific hierarchical order. Gene ontology results showed varied enrichment in terms including cell, biogenesis, localisation, binding and locomotion across region pairs. In addition, significantly higher miR-34c expression was seen in the yak caput epididymidis relative to the corpus and cauda epididymidis.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Aydos ◽  
O S Aydos ◽  
Y Yukselten ◽  
A Sunguroglu ◽  
K Aydos

Abstract Study question Could Nrf2 polymorphism (-617C&gt;A; rs6721961) and oxidative stress (OS)-induced changes of signature seminal plasma (SP) miRNAs related to Nrf2 provide possible biomarkers of male infertility? Summary answer -617C&gt;A SNP is associated with infertility through sperm OS DNA damage and miR-582-5p and miR-20a-5p, differentially represented between spermatozoa of smokers-non-smokers, might regulate Nrf2/ARE axis. What is known already As an extrinsic factor causing OS, smoking decreases male infertility by causing sperm membrane damage and DNA fragmentation. Expression of proteins related to the antioxidant defense system and phase 2 detoxifying enzymes controlled mainly by Nrf2/ARE pathway components is vital in managing OS-induced DNA damage. miRNAs, which multiple of are produced abundantly in male germ cells throughout spermatogenesis, have been detected in SP and contribute to multiple biological processes related to male reproductive events. miRNA-expression alterations may be induced in response to OS and without involving DNA sequence changes, miRNAs can provide additional mechanism of regulating the Nrf2 gene expression. Study design, size, duration Wild-type (WT) and SNP (-617) alleles in the Nrf2 gene were studied in 100 infertile cases and 100 controls and their associations with seminal parameters in relation to smoking status were assessed. In infertile cases, sperm DNA damage level was determined and compared among Nrf2 genotypes. Interactions between differentially expressed miRNAs (DEMIs) in response to smoking and Nrf2/ARE pathway components were visualized on a miRNA-mRNA regulatory network using CluePedia (v1.5.7) plugin of Cytoscape software (v3.8.2). Participants/materials, setting, methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was utilized to genotype the Nrf2 SNP (-617). DNA damages were analyzed by Comet assay. DEMIs were identified by a comprehensive bioinformatics analysis using the miRNA expression dataset GSE44134 downloaded from the GEO database. Predicted targets of DEMIs in smokers were identified by mirDIP portal. Known interactions between Nrf2 and its first neighbors were visualized after selecting STRING-actions, miRTarBase and miRecords validated miRNA source files from CluePedia panel. Main results and the role of chance There was significant difference for Nrf2 polymorphism between fertile and infertile males. The A allele was detected more frequently in the patient group; (P = 0.001). The frequencies of the C and A alleles of the Nrf2 were 62% and 38% in patients, and 78% and 44% in control group. The AA genotype was higher in the infertiles; 14% vs. 3% (P = 0.001). In smokers, sperm quality decreased significantly in AA genotype. The risk of DNA damage was highest with 224.58 AU in the AA genotype group, whereas it is the lowest with 164.56 AU in those carrying the CC genotype (P &lt; 0.005). 21 differentially expressed miRNAs (including 7 downregulated and 14 upregulated in smokers) were identified. Among the upregulated DEMIs, miR-582-5p, miR-20a-5p, miR-573, miR-186-5p, miR-499a-5p were found to target the Nrf2 mRNA, suggesting their usage as biomarkers capable of indicating the antioxidant ability of the male reproductive system. The interrelations between Nrf2/Nrf2 direct interactors and DEMIs revealed the regulatory role of hsa-miR-20a-5p in SQSTM1/p62-Keap1-Nrf2 axis linked to selective autophagy. hsa-miR-582-5p was found to regulate the JNK/Jun/caspase-3 pathway, previously shown to be activated in response to OS, in which JUN can activate or suppress the Nrf2 expression. Limitations, reasons for caution Small number of cases while evaluating the effect of smoking weakens our ability to generalize the results. Including other coexisting factors and larger patient groups carrying other functional variants of Nrf2 as well as confirming the results at the protein level would further strengthen the results of the study. Wider implications of the findings This study is the first to report -617C&gt;A polymorphism in the Nrf2 gene in the Turkish population and such a SNP may cause impaired fertility in men, especially in smokers, through oxidative metabolism. Considering these data may be valuable in determining risk groups. Trial registration number N/A


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Yibing Liu ◽  
Fengxia Zhang ◽  
Zhen Tan ◽  
...  

Fatty traits are very important in pig production. However, the role of microRNAs (miRNAs) in fat deposition is not clearly understood. In this study, we compared adipose miRNAs from three full-sibling pairs of female Landrace pigs, with high and low backfat thickness, to investigate the associated regulatory network. We obtained an average of 17.29 million raw reads from six libraries, 62.27% of which mapped to the pig reference genome. A total of 318 pig miRNAs were detected among the samples. Among them, 18 miRNAs were differentially expressed (p-value < 0.05, |log2fold change| ≥ 1) between the high and low backfat groups; 6 were up-regulated and 12 were down-regulated. Functional enrichment of the predicted target genes of the differentially expressed miRNAs, indicated that these miRNAs were involved mainly in lipid and carbohydrate metabolism, and glycan biosynthesis and metabolism. Comprehensive analysis of the mRNA and miRNA transcriptomes revealed possible regulatory relationships for fat deposition. Negatively correlated mRNA–miRNA pairs included miR-137–PPARGC1A, miR-141–FASN, and miR-122-5p–PKM, indicating these interactions may be key regulators of fat deposition. Our findings provide important insights into miRNA expression patterns in the backfat tissue of pig and new insights into the regulatory mechanisms of fat deposition in pig.


2021 ◽  
Vol 66 (No. 5) ◽  
pp. 156-167
Author(s):  
Lu Zhu ◽  
Jingtong Huang ◽  
Jing Jing ◽  
Qi Zheng ◽  
Qianyun Ji ◽  
...  

MicroRNAs (miRNAs) play a significant role in animal reproduction by regulating the expression of protein-coding genes. The hypothalamus regulates the pregnancy cycle changes in goats; however, the action mechanism of miRNAs in this regulation remains to be investigated. In this study, we performed RNA sequencing of hypothalamus samples to establish a comprehensive miRNA profiling of pregnant and non-pregnant goats. A total of 384 miRNAs were identified in the hypothalamus of pregnant goats, of which 239 were newly discovered, and 390 miRNAs were detected in the hypothalamus of non-pregnant goats of which 192 were novel miRNAs. In addition, a total of 280 differentially expressed miRNAs are characterized, of which 171 were known miRNAs and 109 were novel miRNAs. Functional enrichment suggests that the predicted target genes of differentially expressed miRNAs may be involved in the reproductive process. This preliminary study revealed that let-7f-5p, miR-99a-5p and miR-100-5p may be involved in the hypothalamic regulation of pregnancy cycle changes in goats. These data provide a basic reference for subsequent studies on the regulatory role of miRNAs in mammalian pregnancy.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Aydos ◽  
O S Aydos ◽  
Y Yukselten ◽  
A Sunguroglu ◽  
K Aydos

Abstract Study question Could Nrf2 polymorphism (–617C&gt;A; rs6721961) and oxidative stress (OS)-induced changes of signature seminal plasma (SP) miRNAs related to Nrf2 provide possible biomarkers of male infertility? Summary answer –617C&gt;A SNP is associated with infertility through sperm OS DNA damage and miR–582–5p and miR–20a–5p, differentially represented between spermatozoa of smokers-non-smokers, might regulate Nrf2/ARE axis. What is known already As an extrinsic factor causing OS, smoking decreases male infertility by causing sperm membrane damage and DNA fragmentation. Expression of proteins related to the antioxidant defense system and phase 2 detoxifying enzymes controlled mainly by Nrf2/ARE pathway components is vital in managing OS-induced DNA damage. miRNAs, which multiple of are produced abundantly in male germ cells throughout spermatogenesis, have been detected in SP and contribute to multiple biological processes related to male reproductive events. miRNA-expression alterations may be induced in response to OS and without involving DNA sequence changes, miRNAs can provide additional mechanism of regulating the Nrf2 gene expression. Study design, size, duration Wild-type (WT) and SNP (–617) alleles in the Nrf2 gene were studied in 100 infertile cases and 100 controls and their associations with seminal parameters in relation to smoking status were assessed. In infertile cases, sperm DNA damage level was determined and compared among Nrf2 genotypes. Interactions between differentially expressed miRNAs (DEMIs) in response to smoking and Nrf2/ARE pathway components were visualized on a miRNA-mRNA regulatory network using CluePedia (v1.5.7) plugin of Cytoscape software (v3.8.2). Participants/materials, setting, methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was utilized to genotype the Nrf2 SNP (–617). DNA damages were analyzed by Comet assay. DEMIs were identified by a comprehensive bioinformatics analysis using the miRNA expression dataset GSE44134 downloaded from the GEO database. Predicted targets of DEMIs in smokers were identified by mirDIP portal. Known interactions between Nrf2 and its first neighbors were visualized after selecting STRING-actions, miRTarBase and miRecords validated miRNA source files from CluePedia panel. Main results and the role of chance There was significant difference for Nrf2 polymorphism between fertile and infertile males. The A allele was detected more frequently in the patient group; (P = 0.001). The frequencies of the C and A alleles of the Nrf2 were 62% and 38% in patients, and 78% and 44% in control group. The AA genotype was higher in the infertiles; 14% vs. 3% (P = 0.001). In smokers, sperm quality decreased significantly in AA genotype. The risk of DNA damage was highest with 224.58 AU in the AA genotype group, whereas it is the lowest with 164.56 AU in those carrying the CC genotype (P &lt; 0.005). 21 differentially expressed miRNAs (including 7 downregulated and 14 upregulated in smokers) were identified. Among the upregulated DEMIs, miR–582–5p, miR–20a–5p, miR–573, miR–186–5p, miR–499a–5p were found to target the Nrf2 mRNA, suggesting their usage as biomarkers capable of indicating the antioxidant ability of the male reproductive system. The interrelations between Nrf2/Nrf2 direct interactors and DEMIs revealed the regulatory role of hsa-miR–20a–5p in SQSTM1/p62-Keap1-Nrf2 axis linked to selective autophagy. hsa-miR–582–5p was found to regulate the JNK/Jun/caspase–3 pathway, previously shown to be activated in response to OS, in which JUN can activate or suppress the Nrf2 expression. Limitations, reasons for caution Small number of cases while evaluating the effect of smoking weakens our ability to generalize the results. Including other coexisting factors and larger patient groups carrying other functional variants of Nrf2 as well as confirming the results at the protein level would further strengthen the results of the study. Wider implications of the findings: This study is the first to report –617C&gt;A polymorphism in the Nrf2 gene in the Turkish population and such a SNP may cause impaired fertility in men, especially in smokers, through oxidative metabolism. Considering these data may be valuable in determining risk groups. Trial registration number N/A


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 700
Author(s):  
Bilal Ahmad Mir ◽  
Henry Reyer ◽  
Katrin Komolka ◽  
Siriluck Ponsuksili ◽  
Christa Kühn ◽  
...  

Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.


Reproduction ◽  
2019 ◽  
Vol 157 (6) ◽  
pp. 525-534 ◽  
Author(s):  
Hang Qi ◽  
Guiling Liang ◽  
Jin Yu ◽  
Xiaofeng Wang ◽  
Yan Liang ◽  
...  

MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjustedPvalue <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fernanda Ferreira Salgado ◽  
Letícia Rios Vieira ◽  
Vivianny Nayse Belo Silva ◽  
André Pereira Leão ◽  
Priscila Grynberg ◽  
...  

Abstract Background Several mechanisms regulating gene expression contribute to restore and reestablish cellular homeostasis so that plants can adapt and survive in adverse situations. MicroRNAs (miRNAs) play roles important in the transcriptional and post-transcriptional regulation of gene expression, emerging as a regulatory molecule key in the responses to plant stress, such as cold, heat, drought, and salt. This work is a comprehensive and large-scale miRNA analysis performed to characterize the miRNA population present in oil palm (Elaeis guineensis Jacq.) exposed to a high level of salt stress, to identify miRNA-putative target genes in the oil palm genome, and to perform an in silico comparison of the expression profile of the miRNAs and their putative target genes. Results A group of 79 miRNAs was found in oil palm, been 52 known miRNAs and 27 new ones. The known miRNAs found belonged to 28 families. Those miRNAs led to 229 distinct miRNA-putative target genes identified in the genome of oil palm. miRNAs and putative target genes differentially expressed under salinity stress were then selected for functional annotation analysis. The regulation of transcription, DNA-templated, and the oxidation-reduction process were the biological processes with the highest number of hits to the putative target genes, while protein binding and DNA binding were the molecular functions with the highest number of hits. Finally, the nucleus was the cellular component with the highest number of hits. The functional annotation of the putative target genes differentially expressed under salinity stress showed several ones coding for transcription factors which have already proven able to result in tolerance to salinity stress by overexpression or knockout in other plant species. Conclusions Our findings provide new insights into the early response of young oil palm plants to salinity stress and confirm an expected preponderant role of transcription factors - such as NF-YA3, HOX32, and GRF1 - in this response. Besides, it points out potential salt-responsive miRNAs and miRNA-putative target genes that one can utilize to develop oil palm plants tolerant to salinity stress.


2018 ◽  
Vol 49 (5) ◽  
pp. 2088-2098 ◽  
Author(s):  
Yu Chen ◽  
Yanling Wu ◽  
Haiqiang Yao ◽  
Hui Luo ◽  
Bing Lin ◽  
...  

Background/Aims: Based on the theory of constitution in Traditional Chinese Medicine (TCM), the Chinese Han population has been classified into nine constitutions. Of these, Yang deficiency constitution mainly exhibit cold intolerance while Yin deficiency constitution mainly exhibit heat intolerance. Some studies have been carried out to explore the modern genetic and biological basis of such constitution classification, but more remains to be done. MicroRNA (miRNA) serves as post-transcriptional regulators of gene expression and may play a role in the classification process. Here, we examined miRNA expression profile of saliva to further improve the comprehensiveness of constitution classification. Methods: Saliva was collected from Chinese Han individuals with Yang deficiency, Yin deficiency and Balanced constitutions (n=5 each), and miRNA expression profile was determined using the Human miRNA OneArray®v7. Based on 1.5 Fold change, means log2|Ratio|≥0.585 and P-value< 0.05, differentially expressed miRNA was screened. Target genes were predicted using DIANA-TarBasev7.0 and analysis of KEGG pathway was carried out using DIANA-mirPathv.3. Results: We found that 81 and 98 differentially expressed miRNAs were screened in Yang deficiency and Yin deficiency constitution, respectively. Among them, 16 miRNAs were identical and the others were unique. In addition, the target genes that are regulated by the unique miRNAs were significantly enriched in 27 and 20 signaling pathways in Yang deficiency and Yin deficiency constitution, respectively. Thyroid hormone signaling pathway is present in both constitutions. These unique miRNAs that regulated target genes of thyroid hormone signaling pathway may be associated with cold intolerance or heat intolerance. Conclusion: The results of our study show that Yang deficiency and Yin deficiency constitutions exhibit systematic differences in miRNA expression profile. Moreover, the distinct characteristics of TCM constitution may be explained, in part, by differentially expressed miRNAs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Nie ◽  
Zongchao Liao ◽  
Minyi Zhong ◽  
Jie Zhou ◽  
Jiabang Cai ◽  
...  

Chromium (Cr) is a heavy metal in nature, which poses a potential risk to toxicity to both animals and plants when releasing into the environment. However, the regulation of microRNA (miRNA)-mediated response to heavy metal Cr has not been studied in Miscanthus sinensis. In this study, based on high-throughput miRNA sequencing, a total of 104 conserved miRNAs and 158 nonconserved miRNAs were identified. Among them, there were 45 differentially expressed miRNAs in roots and 13 differentially expressed miRNAs in leaves. The hierarchical clustering analysis showed that these miRNAs were preferentially expressed in a certain tissue. There were 833 differentially expressed target genes of 45 miRNAs in roots and 280 differentially expressed target genes of 13 miRNA in leaves. After expression trend analysis, five significantly enriched modules were obtained in roots, and three significantly enriched trend blocks in leaves. Based on the candidate gene annotation and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) function analysis, miR167a, novel_miR15, and novel_miR22 and their targets were potentially involved in Cr transportation and chelation. Besides, miR156a, miR164, miR396d, and novel_miR155 were identified as participating in the physiological and biochemical metabolisms and the detoxification of Cr of plants. The results demonstrated the critical role of miRNA-mediated responses to Cr treatment in M. sinensis, which involves ion uptake, transport, accumulation, and tolerance characteristics.


Sign in / Sign up

Export Citation Format

Share Document