scholarly journals Lipase-catalyzed transesterification of rendering plant fat – Short Communication

2010 ◽  
Vol 56 (No. 3) ◽  
pp. 122-125 ◽  
Author(s):  
A. Prošková ◽  
Z. Kopicová ◽  
J. Kučera ◽  
L. Škarková

Soluble lipase (Lipozyme CALB L) was immobilized by covalent bond to chitosan pellets prepared from Aspergillus niger mycelium. This immobilized enzyme was compared with commercial immobilized lipase of the same origin (Novozym 435). Novozym 435 is also lipase CALB L commercially immobilized by sorption on poly-(methyl acrylate). Novozym 435 shows much higher conversion of rendering plant fat in methanol under optimum conditions, having, at the same time, lower optimum temperature and lower stability at higher temperature. Lipozyme CALB L immobilized on chitosan leads to a low conversion, regardless its higher thermal stability. Novozym 435 gives conversion of about 50% of theoretical value, which is in good accordance with basically catalyzed transesterification of rendering plant fat described elsewhere. Lipozyme CALB L immobilized on chitosan gives conversion of about 10% of theoretical value only. The use of Novozym 435 in two-step system (enzyme-acid) seems to be more convenient compared with traditional two-step system (base-acid)

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1802 ◽  
Author(s):  
Yesol Baek ◽  
Jonghwa Lee ◽  
Jemin Son ◽  
Taek Lee ◽  
Abdus Sobhan ◽  
...  

Octyl formate is an important substance used in the perfume industry in products such as cosmetics, perfumes, and flavoring. Octyl formate is mostly produced by chemical catalysts. However, using enzymes as catalysts has gathered increasing interest due to their environment-friendly proprieties. In the present study, we aimed to identify the optimal conditions for the synthesis of octyl formate through immobilized enzyme-mediated esterification. We investigated the effects of enzymatic reaction parameters including the type of immobilized enzyme, enzyme concentration, molar ratio of reactants, reaction temperature, and type of solvent using the optimization method of one factor at a time (OFAT). The maximum conversion achieved was 96.51% with Novozym 435 (15 g/L), a 1:7 formic acid to octanol ratio, a reaction temperature of 40 °C, and with 1,2-dichloroethane as solvent. Moreover, we demonstrated that the Novozym 435 can be reused under the optimal conditions without affecting the octyl formate yield, which could help reduce the economic burden associated with enzymatic synthesis.


2019 ◽  
pp. 1232-1239
Author(s):  
Mohammed A Alsoufi ◽  
Raghad A. Aziz

The aim of this study was the production of aspartame by using immobilized thermolysin in bentonite clay. The yield of immobilized thermolysin in bentonite was 92% of the original enzyme amount. pH profile of free and immobilized enzyme was 7.0 and 7.5 respectively which was stable at 6.5-9.0 for 30min. The optimum temperature of both enzymes was 50°C, while they were stable at 65°C for 30min. however, they lost 52.73 and 61.72% from its main activity at 80°C respectively. Immobilized thermolysin has retained all activity within 27 days, but it kept 68.27% of initial activity when stored for 60 days at 4°C whereas, it retained a full activity after 20 continue usage. In addition, it retained 86.53% of its original activity after 30 continuing usages. The yield of produced aspartame was increased with reaction time; it was 9% after 1h and increased gradually to 100% after 10h at reaction conditions.


2011 ◽  
Vol 8 (2) ◽  
pp. 896-902
Author(s):  
Seniwati Dali ◽  
A. B. D. Rauf Patong ◽  
M. Noor Jalaluddin ◽  
Pirman ◽  
Baharuddin Hamzah

Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase fromAspergillus oryzae. Lipase was partially purified from the culture supernatant ofAspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum temperature, thermal stability and reusability were carried out. The results showed that free lipase had optimum pH 8,2 and optimum temperature 35 °C while the immobilized lipase had optimum 8,2 and optimum temperature 45 °C. The thermal stability of the immobilized lipase, relative to that of the free lipase, was markedly increased. The immobilized lipase can be reused for at least six times.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 641 ◽  
Author(s):  
Thanapon Charoenwongpaiboon ◽  
Rath Pichyangkura ◽  
Robert A. Field ◽  
Manchumas Hengsakul Prousoontorn

Fructooligosaccharides are well-known carbohydrate molecules that exhibit good probiotic activity and are widely used as sweeteners. Inulin-type fructooligosaccharides (IFOs) can be synthesized from sucrose using inulosucrase. In this study, cross-linked enzyme aggregates (CLEAs) of Lactobacillus reuteri 121 inulosucrase (R483A-LrInu) were prepared and used as a biocatalyst for IFOs production. Under optimum conditions, R483A-LrInu CLEAs retained 42% of original inulosucrase activity. Biochemical characterization demonstrated that the optimum pH of inulosucrase changed from 5 to 4 after immobilization, while the optimum temperature was unchanged. Furthermore, the pH stability and thermostability of the R483A-LrInu CLEAs was significantly improved. IFOs product characterization indicated that the product specificity of the enzyme was impacted by CLEA generation, producing a narrower range of IFOs than the soluble enzyme. In addition, the R483A-LrInu CLEAs showed operational stability in the batch synthesis of IFOs.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Magdalena Rychlicka ◽  
Anna Gliszczyńska

The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively.


2013 ◽  
Vol 59 (No. 2) ◽  
pp. 51-55
Author(s):  
A. Prošková ◽  
J. Kučera ◽  
Z. Kopicová ◽  
L. Škarková

Three most frequently used methods for fat transesterification were compared using rendering plant fat (RPF) as model. Acid-catalysed transesterification was found to be the most effective (conversion 90%) at optimum conditions (fat: methanol ratio 1:10, sulphuric acid amount of 2% v/v, temperature 95°C). Base-catalysed transesterification of RPF on the other hand, results in much lower conversion (45%) at optimum conditions (fat:methanol ratio 1:20, NaOH amount 8% w/v, optimum temperature 95°C). The difference is done (among others) by the fact that RPF has high concentration of free acid (high acidity number) compared with the fats usually used for transesterification and that free acids are not esterified in alkaline media. Enzyme-(lipase) catalysed reaction could lead to partial esterification of free fatty acids, but with much lower reaction velocity. This fact leads to higher conversion in the case of enzyme-catalysed transesterification of RPF compared with base-catalysed reaction; nevertheless, even in this case the conversion is much lower in comparison with acid-catalysed reaction. The optimum conversion in enzyme-catalysed reaction was 55%.  


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Changxin Li ◽  
Yuan Yu ◽  
Qingwu Zhang ◽  
Hong Zhong ◽  
Shuai Wang

In this study, the cation exchange capacity (CEC); phosphate immobilization capacity (PIC); and chemical, mineralogical, and morphological characteristics of the synthesized electrolytic manganese residue (EMR) based zeolite (EMRZ) were systematically investigated during the synthesis process. By varying synthesis conditions, different zeolites with different purity were generated, and it was proven that a lower Si/Al ratio, relatively higher temperature, and relatively longer time favored the synthesis of zeolite. Besides, the decrease in Si/Al ratio and variation within a narrow range contributed to the forming of Al rich zeolite. Meanwhile, the discrepancy of CEC and PIC of EMRZ contributed to the case in which various elements in EMRZ do have an impact on CEC (Na2O element and type of zeolite) and PIC (calcium and iron components). Moreover, the synthesis conditions were optimized and evaluated in terms of their CEC, specific surface area (SSA), and crystallinity. According to the analyses using XRD, FE-SEM, and XRF and the SSA analysis, the EMRZ (mainly zeolite A, LTA) synthesized under the optimum conditions (initial Si/Al ratio of 1.5, at 100°C, for 1.5 h) was found to be mainly composed of highly ordered cubic zeolites A crystals with a Si/Al ratio of 1.02 and a CEC of 3.45 meq/g.


2018 ◽  
Vol 43 (6) ◽  
pp. 595-604
Author(s):  
Yakup Aslan ◽  
Derya Ömerosmanoğlu ◽  
Eda Öndül Koç

Abstract Objective Since the soluble enzymes can not be used in repeated reactions and are not stable in operational conditions and not suitable for continuous processes, this study aimed the covalent immobilization of Bacillus licheniformis protease (BLP) onto Eupergit CM. Methods Optimum conditions for immobilization were determined by changing the conditions individually. The proteins and L-tyrosine were determined by UV/VIS spectrophotometer. Results The immobilization resulted in 100% immobilization and 107.7% activity yields. The optimum pH (7–8) and the optimum temperature (70°C) have not changed after immobilization. The Km values for free and immobilized enzyme were 26.53 and 37.59 g/L, while the Vmax values were 2.84 and 3.31 g L-Tyrosine/L·min, respectively. The immobilized enzyme has not lost its initial activity during the repeated 20 uses and 20 days of storage. The milk proteins were hydrolyzed in 2 h by using immobilized enzyme. The pH of the milk dropped from 6.89 to 6.53, the color was clearer but there was no change in the smell or the taste. Conclusion Consequently, it can be said that the immobilized BLP obtained can be used for industrial purposes.


Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 278 ◽  
Author(s):  
Joshua Cohen ◽  
Sercan Karav ◽  
Daniela Barile ◽  
Juliana de Moura Bell

As more is learned about glycoproteins’ roles in human health and disease, the biological functionalities of N-linked glycans are becoming more relevant. Protein deglycosylation allows for the selective release of N-glycans and facilitates glycoproteomic investigation into their roles as prebiotics or anti-pathogenic factors. To increase throughput and enzyme reusability, this work evaluated several immobilization methods for an endo-β-N-acetylglucosaminidase recently discovered from the commensal Bifidobacterium infantis. Ribonuclease B was used as a model glycoprotein to compare N-glycans released by the free and immobilized enzyme. Amino-based covalent method showed the highest enzyme immobilization. Relative abundance of N-glycans and enzyme activity were determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Kinetic evaluation demonstrated that upon immobilization, both Vmax and the Km decreased. Optimal pH values of 5 and 7 were identified for the free and immobilized enzyme, respectively. Although a higher temperature (65 vs. 45 °C) favored rapid glycan release, the immobilized enzyme retained over 50% of its original activity after seven use cycles at 45 °C. In view of future applications in the dairy industry, we investigated the ability of this enzyme to deglycosylate whey proteins. The immobilized enzyme released a higher abundance of neutral glycans from whey proteins, while the free enzyme released more sialylated glycans, determined by nano-LC Chip Q-ToF MS.


2013 ◽  
Vol 864-867 ◽  
pp. 465-471
Author(s):  
Tao Deng ◽  
Jun Wei Xu ◽  
Li Huang ◽  
Tao Li ◽  
Xu Ya Yu

In this study, we use natural halloysitum rubrum as novel support materials to immobilize Candida rugosa lipase. The response surface methodology with a four-factor three-level Box-Behnken experimental design was used to evaluate the effects of immobilization parameters, such as pH (4.0 to 6.0), immobilization temperature (25 °C to 35 °C), enzyme/support ratio (0.1 to 0.3, w/w), and immobilization time (1 h to 2 h), on the activity of immobilized lipase. The optimum pH, temperature, enzyme/support ratio, and time for immobilized lipase activity (376.09 U/g) were 5.17, 29.65 °C, 0.3 (w/w), and 1.63 h, respectively. After 15 repeated uses, the immobilized lipase still retained 80% of its initial activity, which indicates good reusability.


Sign in / Sign up

Export Citation Format

Share Document