scholarly journals Cadmium distribution coefficeints and Cd transport in structured soils

2011 ◽  
Vol 48 (No. 3) ◽  
pp. 96-100 ◽  
Author(s):  
Ľ. Lichner ◽  
A. Čipáková

In the case of cadmium transport via soil macropores, the short-term duration of an interaction between the reactive solute in aqueous phase and soil, as well as cadmium precipitation or adsorption on particles < 10–5 m should be taken into account. Two distribution coefficients are proposed for predicting the cadmium transport in a structured soil: the matrix distribution coefficient Kdm, equal to the equilibrium distribution coefficient Kdeq and estimated using the conventional batch technique, and the macropore distribution coefficient KdM, estimated using the modified batch technique. It was found that the conventional approach (using the coefficient Kdeq only) would underestimate a penetration of the part of Cd transported in the macropores about 255-times in the loamy-sand soil in Kalinkovo, 20-times in the loam soil in Macov, and 122-times in the clay soil in Jurová in comparison with the approach proposed in this study.

2020 ◽  
Vol 108 (11) ◽  
pp. 873-877
Author(s):  
Tetsuji Yamaguchi ◽  
Saki Ohira ◽  
Ko Hemmi ◽  
Logan Barr ◽  
Asako Shimada ◽  
...  

AbstractSorption distribution coefficient (Kd) of niobium-94 on minerals are an important parameter in safety assessment of intermediate-depth disposal of waste from core internals etc. The Kd of Nb on clay minerals in Ca(ClO4)2 solutions were, however, not successfully modeled in a previous study. The high distribution coefficients of Nb on illite in Ca(ClO4)2 solutions were successfully reproduced by taking Ca–Nb–OH surface species into account. Solubility of Nb was studied in Ca(ClO4)2 solutions and the results were reproduced by taking an aqueous Ca–Nb–OH complex species, CaNb(OH)6+, into account in addition to previously reported Nb(OH)6− and Nb(OH)72−. Based on this aqueous speciation model, the Ca–Nb–OH surface species responsible for the sorption of Nb on illite in Ca(ClO4)2 solutions was presumed to be X_OCaNb(OH)6. Although uncertainties exist in the speciation of aqueous Ca–Nb–OH species, the result of this study proposed a possible mechanism for high distribution coefficient of Nb on illite in Ca(ClO4)2 solutions. The mechanism includes Ca–Nb–OH complex formation in aqueous, solid and surface phases.


1970 ◽  
Vol 9 (56) ◽  
pp. 269-277 ◽  
Author(s):  
T. E. Osterkamp ◽  
A. H. Weber

The Workman-Reynolds effect was investigated during the phase change of dilute (about 2 × 10-4 N) KCl solutions into single crystals of ice. The ice crystals were oriented with the c-axes either parallel or perpendicular to the growth direction. The solute distribution in the liquid phase. near the interface (within 10 mm), was obtained with a wire-type conductivity cell. For a crystal growth rate 8.8 μm/s the freezing potentials were + 10.0 V and + 6.0 V and the specific charge séparations were 1.3 ± 0 1 × 10-6 C/g of ice and 1 4 ± 0.1 × 10-6 C/g of ice for growth parallel and perpendicular. Respectively, to the c-axes of the ice crystals . The equilibrium solute distribution coefficient was found to be 4 × 10-3 for KCl solutions for both crystal orientations. An “apparent” (because of convection in the liquid phase) distribution coefficient ranged from 0.031- 0.074. The “apparent” diffusion coefficients ranged from 1.3–4.9 × 10-3 mm2/s and varied linearly with growth rate. The ionic distribution coefficients. K+ and K-, were approximately K+ - K- = - 2 × 10-5 and K+ + K - = 8 × 10-3 for the KCl solutions.


1982 ◽  
Vol 19 (1) ◽  
pp. 92-103 ◽  
Author(s):  
W. D. Reynolds ◽  
R. W. Gillham ◽  
J. A. Cherry

The validity of using a distribution coefficient (Kd) in the mathematical prediction of strontium and cesium transport through uniform saturated sand was investigated by comparing measured breakthrough curves with curves of simulations using the advection-dispersion and the advection equations. Values for Kd were determined by batch equilibration tests and, indirectly, by fitting the mathematical model to breakthrough data from column experiments. Although the advection-dispersion equation accurately represented the breakthrough curves for two nonreactive solutes (chloride and tritium), neither it nor the advection equation provided close representations of the strontium and cesium curves. The simulated breakthrough curves for strontium and cesium were nearly symmetrical, whereas the data curves were very asymmetrical, with long tails. Column experiments with different pore-water velocities indicated that the shape of the normalized breakthrough curves was not sensitive to velocity. This suggests that the asymmetry of the measured curves was the result of nonlinear partitioning of the cations between the solid and liquid phases, rather than nonequilibrium effects. The results indicate that the distribution coefficient, when used in advection-dispersion models for prediction of the migration of strontium and cesium in field situations, can result in significant error.


2019 ◽  
Vol 9 (10) ◽  
pp. 1967 ◽  
Author(s):  
Emilio Rosales ◽  
Silvia Escudero ◽  
Marta Pazos ◽  
Mª Angeles Sanromán

The search for efficient and environmentally friendly adsorbents has positioned lignocellulosic materials as attractive and low-cost alternatives instead of synthetic materials. Consequently, the present work investigates the efficacy of untreated lime peel (LM) and pineapple core (PP) as biosorbents for Cr(VI) removal. The maximum adsorption capacities (acquired at 24 h) of these sorbents were 9.20 and 4.99 mg/g, respectively. The use of these sorbents is expected to offer a rapid and efficient solution to treat effluents containing Cr(VI). Pineapple core showed the best biosorption properties and good distribution coefficients (distribution coefficient KD 8.35–99.20 mL/g) and the optimization of the adsorption was carried out by a response surface methodology using the Box–Behnken design. Thus, the effect of pH, biosorbent dosage, and temperature were assessed during the whole procedure. Three different responses were studied—Cr(VI) removal, Cr biosorption, and distribution coefficient—and the optimal conditions for maximizing the responses were identified by numerical optimization applying the desirability function. The resulting optimal conditions were: initial solution pH 2.01, biosorbent dosage 30 g/L, and temperature 30.05 °C. Finally, the process scale-up was evaluated by the simulation of the process working with a column of 100 L using the Fixed-bed Adsorption Simulation Tool (FASTv2.1). This research presents the obtained environmental benefits: i) reduction of pineapple waste, ii) Cr(VI) reduction and biosorption, iii) shortest sorption time for Cr, iv) properties that allow the biosorption process on the flow system, and v) low-cost process.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 367 ◽  
Author(s):  
Katri Avarmaa ◽  
Lassi Klemettinen ◽  
Hugh O’Brien ◽  
Pekka Taskinen ◽  
Ari Jokilaakso

High-tech metals, including Ga, Ge and In, are critical for the performance of electrical and electronic equipment (EEE). None of these three metals exist in mineable levels in natural minerals, and thus their availability and production are dependent on the primary and secondary base metals (including Zn, Al and Cu) production. To secure the supply of high-tech metals in the future, their behavior, including distribution coefficients (LCu/s = [wt% M]in copper/(wt% M)in slag), in primary and secondary processes need to be characterized. This study reports three series of copper-slag distribution experiments for Ga, Ge and In in simulated secondary copper smelting and refining process conditions (T = 1300 °C, pO2 = 10−9–10−5 atm) using a well-developed drop–quench technique followed by EPMA and LA-ICP-MS analyses. This study shows how an analytical technique more traditionally applied to the characterization of ores or minerals can also be applied to metallurgical process investigation. The LA-ICP-MS analysis was used for the first time for measuring the concentrations of these minor elements in metallurgical glasses, i.e., slags, and the results were compared to the geological literature. The distribution coefficient of indium increased as a function of decreasing oxygen partial pressure from 0.03 to 10, whereas the distribution coefficient of gallium was 0.1 at 10−9 atm and decreased as the pO2 increased. The concentrations of gallium in slags were between 0.4 and 0.6 wt% and germanium around 1 ppm. Germanium was vaporized almost entirely from the samples.


Weed Science ◽  
1977 ◽  
Vol 25 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Robert P. Rice ◽  
Alan R. Putnam

UHF energy (2450 MHz) was applied to seeds and seed-soil mixtures with a waveguide under controlled conditions. After treatment, seeds were germinated at 27 C to determine viability. Seeds were either killed or seedlings grew normally with no intermediate levels of inhibition typical of that produced with sub-lethal dosages of herbicides. The energy required to kill several species of dry seeds ranged from 88 to 183 J/cm2and could be reduced 12 to 42% by a 24-hr imbibition period prior to treatment. When several seed-soil mixtures were treated, the greatest toxicity occurred in a moist muck and clay loam soil, with the least toxicity on a dry loamy sand soil. Although attenuation of activity occurred in dry soils of three types, less energy was required to kill seeds in moist soils than was required in the absence of soil. Increasing the power levels reduced the time of exposure necessary to kill barnyardgrass [Echinochloa crus-galli(L.) Beauv.] seeds. Less energy was required to kill seeds as the soil temperature was increased from −20 to +18 C.


Sign in / Sign up

Export Citation Format

Share Document