scholarly journals Field priming with cytokinins enhances seed viability of wheat after low temperature storage

2021 ◽  
Vol 67 (No. 2) ◽  
pp. 77-84
Author(s):  
Radoslav Chipilski ◽  
Irina Moskova ◽  
Albena Pencheva ◽  
Konstantina Kocheva

Field experiments were conducted with two winter wheat cultivars that were primed with 6-benzylaminopurine (6-BA) or kinetin at the concentration 10 mg/L twice during the grain filling stage. After priming, wheat physiological parameters were measured in the field, and the analysis of yield was performed after harvest. Harvested seeds were subjected to low temperature storage for 12 months at –18 °С simulating conservation conditions in genebanks. In field experiments, treated plants exhibited up to 14% higher productivity, higher fresh and dry weight, and chlorophyll content index of flag leaves. Priming significantly improved germination, seedling vigour and growth parameters. In 5-days-old seedlings developed from low temperature stored seeds of field primed plants, the average accumulation of malondialdehyde and H<sub>2</sub>O<sub>2</sub> was estimated 25% lower, which contributed to higher cell membrane stability. These results correlated positively with growth characteristics of 15-days-old seedlings. The stimulating action of cytokinin priming was more pronounced in the modern cv. Geya-1 compared to the older cv. Sadovo 772 and could be attributed to improved anti-aging mechanism connected with better protection against oxidative damage.  

2020 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
Diah Rochana Puspitasari ◽  
Anne Nuraini ◽  
Sumadi Sumadi

Low temperature and gibberellin treatments affected on breaking dormancy. The effects of low temperature in storage duration and gibberellin treatrments on breaking of dormancy of garlic were examined in this study. The aims of this study to determinate the best treatments for breaking garlic bulb dormancy. The sorted garlic bulbs were stored at 4 ± 0.4 ° C for 0 (control), 15, 30 and 45 days. The bulbs that have been treated by low temperature then treated by gibberellins at various concentrations including 0, 75, 150, and 225 mgL-1 by soaking for 24 hours. The bulbs were  planted in the seedling house. The low temperature storage (4±0,4ᵒC) for 45 days is more effective than 0, 15 and 30 days, while the concentration of gibberellins were not have a significant effect on breaking dormancy.  GA3 endogenous was increased during low temperature storage, on the other hand, it accelerated on breaking dormancy . The highest percentage of sprouting  bulb produced by treatment at low temperature storage for 45 days. Growth parameters such as shoot length, shoot dry weight and leaves get the best at 45 days storage time. Low temperature storage (4±0,4ᵒC) is effective in breaking dormancy of garlic bulb.


2012 ◽  
Vol 49 (2) ◽  
pp. 279-294 ◽  
Author(s):  
MARCIA CROFT ◽  
ABRAM BICKSLER ◽  
JAMES MANSON ◽  
RICK BURNETTE

SUMMARYChanges in seed viability over 12 months of low-input storage conditions were monitored on five diverse seed species grown in the tropics: amaranth (Amaranthus cruentus), lablab bean (Lablab purpureus), moringa (Moringa oleifera), pumpkin (Cucurbita moschata) and tomato (Solanum lycopersicum). Because the costs of maintaining low-temperature storage can be prohibitively expensive in developing countries, this study explored alternatives to low-temperature storage at the Educational Concerns for Hunger Organization (ECHO) Asia Impact Center Seed Bank in Northern Thailand. Specifically, this research compared the effects of vacuum sealing and refrigeration on stored seed viability in both laboratory and field settings. While seed species was an influential factor in determining seed longevity, the relative importance of vacuum sealing and refrigeration differed for the dependent variables of seed moisture content, germination rate, mean time to 50% germination and field emergence. Although the combination of vacuum sealing and refrigeration was most effective at conserving seed quality as measured by each of these variables, the storage of seeds in vacuum-sealed packages at ambient temperatures was more effective than unsealed but refrigerated packets at conserving low moisture content and high germination and field emergence rates across species. This suggests that for resource-constrained seed banks in the tropics, vacuum sealing with or without refrigeration may represent a viable alternative to other expensive and energy-intensive storage techniques.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 449-452 ◽  
Author(s):  
Chieri Kubota ◽  
Nihal C. Rajapakse ◽  
Roy E. Young

Broccoli (Brassica oleracea L. Botrytis Group `Green Duke') and Hosta tokudama F. Maekawa `Newberry Gold' plantlets, which were ready for transplanting after photoautotrophic (sugar-free) culture, were stored 4 to 6 weeks at 5C under various light qualities and photosynthetic photon fluxes (PPF). Illumination during storage maintained quality, photosynthetic ability, and regrowth potential of plantlets stored at low temperature. PPF affected quality of broccoli and Hosta plantlets. Broccoli plantlets responded to storage light quality, while Hosta did not. White light maintained the quality of broccoli plantlets better during 6 weeks of storage than did red or blue light. Red and blue light caused an increase in internode length and reduction in chlorophyll concentrations compared to white light. Photosynthetic and regrowth potentials of plantlets were not affected by spectral quality during storage. Considering changes in dry weight, stem length, and leaf yellowing, the quality of broccoli plantlets was best maintained under white light at 2 μmol·m–2·s–1 PPF. PPF and light quality were shown to be important factors in the preservation of transplant quality and suppression of growth of the plantlets during low-temperature storage.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 361-363 ◽  
Author(s):  
Mark P. Kaczperski ◽  
Allan M. Armitage ◽  
Pamela M. Lewis

Pelargonium×hortorum L.H. Bailey `Scarlet Elite' seedlings were grown in plugs from seed to transplant size. About 14 days before attaining transplant size, seedlings were exposed to various fertility or temperature regimes (preconditioning treatments), then stored for 1 to 3 weeks at 5C. Seedlings receiving 150 mg N/liter before storage flowered sooner and required less crop time (days to flower – days in storage) than those receiving 0, 75, or 300 mg. Temperature preconditioning at 10 or 15C delayed flowering compared to preconditioning at 20C. Final plant height and dry weight were not adversely affected by varying N levels or temperature during preconditioning. Preconditioning seedlings with 300 mg N/liter resulted in seedling mortality rates up to 16% after 7 days' storage. Low temperature or fertility were not effective preconditioning treatments. Best results were attained by preconditioning seedlings with 150 mg N/liter.


HortScience ◽  
1994 ◽  
Vol 29 (10) ◽  
pp. 1191-1194 ◽  
Author(s):  
Chieri Kubota ◽  
Toyoki Kozai

Broccoli (Brassica oleracea L. Botrytis Group `Ryokurei') plantlets, cultured photoautotrophically (without sugar in the medium) in vitro for 3 weeks at 23C and 160 μmol·m–2·s–1 photosynthetic photon flux (PPF), were stored for 6 weeks at 5, 10, or 15C under 0 (darkness) or 2 μmol·m–2·s–1 PPF (continuous lighting) supplied by fluorescent lamps (white light). Dry weight of the plantlets stored for 6 weeks at 5 or 10C in light was not significantly different from that of the plantlets before storage. Dry weight of the plantlets decreased as temperature increased and was maintained at higher levels in light than in darkness. Chlorophyll concentrations of the plantlets were higher at the lower temperatures. Chlorophyll fluorescence kinetics indicated higher activities of chlorophyll of the plantlets stored in light than in darkness. Lighting at as low as 2 μmol·m–2·s–1 PPF was important to preserve photosynthetic and regrowth abilities and dry weight of the plantlets during low-temperature storage.


Alloy Digest ◽  
1964 ◽  
Vol 13 (8) ◽  

Abstract USS 9% Nickel Steel was specifically developed for low-temperature storage vessels operating down to minus 320 F. It is recommended for cryogenic service. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. Filing Code: SA-166. Producer or source: United States Steel Corporation.


2006 ◽  
Vol 75 (3) ◽  
pp. 209-212 ◽  
Author(s):  
Kodthalu Seetharamaiah Shivashankara ◽  
Seiichiro Isobe ◽  
Hiroshi Horita ◽  
Makiko Takenaka ◽  
Takeo Shiina

Sign in / Sign up

Export Citation Format

Share Document