scholarly journals Effect of microbial oil, evening primrose oil and borage oil on rumen fermentation in vitro

2012 ◽  
Vol 50 (No. 11) ◽  
pp. 480-486 ◽  
Author(s):  
D. Jalc ◽  
A. Potkanski ◽  
M. Szumacher-Strabel ◽  
A. Cieslak ◽  
M. Certik

The objective of this study was to examine the effects of microbial oil, evening primrose oil and borage oil on rumen fermentation of a diet consisting of 80% of hay and 20% of barley in an artificial rumen (Rusitec). All three oils contained gamma-linolenic acid (GLA), microbial oil &ndash; 8.4%, evening primrose oil &ndash; 9.2% and borage oil &ndash; 23.7% out of the total fatty acid content. The experiment in Rusitec lasted 11 days. After a stabilization period (5 days), microbial oil (5% wt/wt) was added into fermentation vessel V<sub>2</sub>, evening primrose oil (5% wt/wt) into V<sub>3</sub> and borage oil (5%wt/wt) into V<sub>4</sub> (6 days). Fermentation vessel V<sub>1</sub> served as a control (without oils). The results showed that the oils did not affect any of the basal parameters of rumen fermentation (pH, NH<sub>3</sub>-N, degradation of dry matter, organic matter, neutral detergent fibre, acid detergent fibre). Methane production (mmol/day) was reduced numerically by the oils; microbial oil, evening primrose oil and borage oil decreased CH<sub>4</sub> production about 11.32%, 11.45% and 2.04%, respectively. The supplementation of the oils to the total mixed ration (TMR) significantly decreased percentage proportions of short-chain fatty acids (SCFA, about 0.1&ndash;0.3%), medium-chain fatty acids (MCFA, about 8%) and increased long-chain fatty acids (LCFA, about 8%) in the effluent. Stearic acid C<sub>18:0</sub> was the major FA in the effluent and was significantly reduced in oil supplemented diets. The percentage proportion of trans C<sub>18:1</sub> isomers significantly increased (1.7&ndash;2 times) in all oil supplemented diets. The main intermediates &ndash; cis 9, trans 11 C<sub>18:2</sub> (CLA) and trans 11 C<sub>18:1 </sub>(TVA) also increased after oil supplementation of the diet. TVA concentration with microbial oil, evening primrose oil and borage oil supplementation was 3.17%, 8.19% and 9.3% in comparison with the control (1.38%). CLA concentration significantly increased 2.3, 1.2, and 2.1 times after microbial oil, evening primrose oil and borage oil supplementation in Rusitec. Finally, the oil supplementation caused incomplete biohydrogenation of unsaturated FA and it was characterized by an increase in TVA concentration and TVA to C<sub>18:0</sub> ratio in oil supplemented diets.

1984 ◽  
Vol 67 (7) ◽  
pp. 1439-1444 ◽  
Author(s):  
William Chalupa ◽  
Bonnie Rickabaugh ◽  
D. Kronfeld ◽  
S. David Sklan

2015 ◽  
Vol 16 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Fabíola Franklin de MEDEIROS ◽  
Leilson Rocha BEZERRA ◽  
Aderbal Marcos de Azevêdo SILVA ◽  
Heloisa CARNEIRO ◽  
Raissa Kiara Oliveira de MORAIS ◽  
...  

SUMMARY The aim of the study was evaluate the production potential for methane (CH4) and carbon dioxide (CO2), short-chain fatty acids, ammonia nitrogen (N-NH3) and pH by semi-automated techniquein vitro from biodiesel byproducts cottonseed cake (Gossypium hirsutum), castor bean (Ricinus communis), moringa cake (Moringa oleifera), jatropha cake (Jatropha curcas) and sunflower cake (Helianthus annuus) substituting corn silage in increasing levels, 0, 30, 50 and 70%. The experimental design used was completely randomized in a 5 x 4 factorial arrangement (byproducts and substitution levels). The inoculum for the in vitro incubations was obtained from three Holstein cows with rumen fistulas. In the experiment, the conditions were verified for the differences in potential gas production among the ingredients. The byproduct of cotton was the ingredient with the greatest potential to produce acetate, butyrate, CO2 and CH4. The byproduct of moringa had the lowest potential for the production of acetate, butyrate, CO2 and CH4 from in vitro degraded dry matter and a greater potential for the production of propionate. Among the byproducts studied, moringa was distinguished for promoting mitigation of CH4 and obtaining levels of pH and N-NH3 satisfactory for maximum rumen fermentation; thus, it is recommended the byproduct of moringa to replace corn silage because reduces environmental impact without impairingin vitro rumen fermentation.


2003 ◽  
Vol 2003 ◽  
pp. 151-151
Author(s):  
B. Vlaeminck ◽  
V. Fievez ◽  
H. van Laar ◽  
D. Demeyer

Rumen microbes contain a high proportion (20 to 50%) of their fatty acids (FA) as odd and branched chain fatty acids (OBCFA; C15:0, iso C15:0, anteiso C15:0, C17:0; iso C17:0; anteiso C17:0 and C17:1) and different bacterial classes have distinctive OBCFA ‘fingerprints’. As OBCFA make up around 5% of FA in milk, it has been suggested that there is scope for these compounds to be used in on-farm diagnostic milk-based tests in relation to the rumen fermentation pattern. Correlations of milk OBCFA with rumen fermentation pattern were recently shown (Vlaeminck et al., 2002). In the current in vitro study, the potential of rumen OBCFA to predict the production of volatile fatty acids (VFA) was evaluated.


2011 ◽  
Vol 50 (No. 10) ◽  
pp. 467-472 ◽  
Author(s):  
D. Jalč ◽  
M. Čertík

The objective of this study was to investigate the effect of microbial oil on rumen fermentation of a diet composed of 60% hay and 40% barley in an artificial rumen (Rusitec). Microbial oil (MO) was produced by the fungus Thamnidium elegans. This fungus grew on the wheat bran/spent malt grains (3:1) mixture. The fatty acid composition of microbial oil was as follows: 0.7% C<sub>14:0</sub>, 15.4% C<sub>16:0</sub>, 10.1% C<sub>18:0</sub>, 50.9% C<sub>18:1</sub>, 13.9% C<sub>18:2</sub> and 8.4% C<sub>18:3</sub> (GLA, &gamma;-linolenic acid). The effect of monensin MON (66 ppm) and fumarate FUM (6.25 mmol) with and without MO supplementation was also studied. The experiment in Rusitec lasted 11 days. After a stabilization period (5 days), MO was added to fermentation vessel V<sub>2</sub> (6 days), MON to fermentation vessel V<sub>3</sub> (6 days) and FUM to fermentation vessel V<sub>4 </sub>(6 days). MO was also added to V<sub>3</sub> and V<sub>4</sub> on the last day together with MON (V<sub>3</sub>) and FUM (V<sub>4</sub>). The fermentation vessel V<sub>1 </sub>served as control (without additives). The results showed that MO reduced (P &lt; 0.05) mol% acetate and increased (P &lt; 0.05) mol% propionate and n-butyrate. Methane production (mmol/day) was reduced numerically (NS). The efficiency of microbial synthesis (EMS) was also reduced numerically and nitrogen incorporated by the microflora (N<sub>M</sub>) was reduced significantly in MO supplementation. There were no differences in the rumen fermentation when MO was applied together with MON and FUM compared to the vessel where only MO was applied. No additive effect was observed in the relationship MO-ionophore or MO-FUM. Monensin and fumarate applied separately showed their typical effects on rumen fermentation in vitro. &nbsp;


2006 ◽  
Vol 15 (Suppl. 1) ◽  
pp. 153-156 ◽  
Author(s):  
S. Kišidayová ◽  
K. Mihaliková ◽  
Z. Váradyová ◽  
A. Potkański ◽  
M. Szumacher-Strabel ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P&lt; 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P&lt; 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P&lt; 0.001) and yielded the lowest BCFA concentration (1.89 mM, P&lt; 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


Sign in / Sign up

Export Citation Format

Share Document