scholarly journals Different biological strategies for the bioremediation of naturally polluted soils  

Author(s):  
Amin Hossein Naeim ◽  
Jila Baharlouei ◽  
Mitra Ataabadi

Finding an appropriate method with the highest rate of polycyclic aromatic hydrocarbon (PAH) removal from naturally polluted soils is an important research issue. A pot factorial experiment (using contaminated soil samples from the Isfahan Refinery, Iran) was conducted in a 90-day period to compare the following bioremediation strategies: (1) natural attenuation (NA): the inherent ability of soil for bioremediation; (2) bioaugmentation (BA): inoculating soil with PAH degrading microbes Marinobacter hydrocarbonoclasticus; (3) biostimulation (BS): using N, P and K nutrients for the stimulation of bioremediating soil bacteria to achieve the C : N : P ratio of 100 : 10 : 1, and(4) bioaugmentation + biostimulation (BS + BA). Treatments NA (22.8%) and BA + BS (63.9%) resulted in the least and the highest rate of PAH removal from the soil. The 2–4 ring compounds had a significantly (P ≤ 0.05) higher rate of degradation than the 5–6 ring compounds. The highest rates were resulted by fluorene (76.41%) and acenaphthylene (72.28%) using the BA + BS treatment. However, the lowest degradation rates were resulted by indeno (1,2,3-cd) pyrene (10.05%), benzo [b] fluoranthene (10.17%), benzo (g, h, i) perylene (12.53%), and benzo [k] fluoranthene (13.67%), using NA treatment. The BA + BS treatments are the most effective method for the bioremediation of PAH polluted soils.  

Author(s):  
Arkadiusz Telesiński ◽  
Anna Kiepas-Kokot

The objective of this study was to assess the soil pollution on an industrial wasteland, where coal-tar was processed in the period between 1880 and 1997, and subsequent to assess the decline in the content of phenols and polycyclic aromatic hydrocarbons (PAHs) during enhanced natural attenuation. The soil of the investigated area was formed from a layer of uncompacted fill. Twelve sampling points were established in the investigated area for collecting soil samples. A study conducted in 2015 did not reveal any increase in the content of heavy metals, monoaromatic hydrocarbons (BTEX), and cyanides. However, the content of PAHs and phenols was higher than the content permitted by Polish norms in force until 2016. In the case of PAHs, it was observed for individual compounds and their total contents. Among the various methods, enhanced natural attenuation was chosen for the remediation of investigated area. Repeated analyses of the contents of phenols and PAHs were conducted in 2020. The results of the analyses showed that enhanced natural attenuation has led to efficient degradation of the simplest substances—phenol and naphthalene. The content of these compounds in 2020 was not elevated compared to the standards for industrial wastelands. The three- and four-ring hydrocarbons were degraded at a lower intensity. Based on the mean decrease in content after 5-year enhanced natural attenuation, the compounds can be arranged in the following order: phenols > naphthalene > phenanthrene > fluoranthene > benzo(a)anthracene > chrysene > anthracene.


2019 ◽  
Author(s):  
Roberto Romero-Silva ◽  
Ayixon Sánchez-Reyes ◽  
Yuletsis Díaz-Rodríguez ◽  
Ramón Alberto Batista-García ◽  
Danai Hernández-Hernández ◽  
...  

AbstractWastes from the oil industry represent one of the sources of soil pollution with the greatest environmental impact. Both drill cuttings and crude residues are delivered to the soil and produce severe toxic effects, mainly due to the presence of polycyclic aromatic hydrocarbons. Various bioremediation technologies have been implemented in order to restore the soil quality and the natural auto depuration capabilities, amongst them: composting, bioaugmentation and biostimulation. All of these bioremediation techniques promise to be eco-friendlier and cheaper alternatives than other approaches. In this work we have evaluated several strains ofPleurotussp. for their effect on the bioremediation of oil-contaminated wastes and drill cuttings disposed in storage tanks or in open-air soil lots for many years. Our results suggest that combined natural attenuation mechanism and directed fungal biodegradation activities, could be promising strategies to remediate heavily petroleum polluted soils and drilling wastes both at the laboratory and in field conditions. Furthermore, we present new data that supportingPleurotusgenera as able to degrade asphaltenes, the most recalcitrant fraction of petroleum. This study proposes an approach that at the same time can treat soils contaminated with waste from drill cuttings and bottoms of crude storage tanks.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2246
Author(s):  
Georgia Charalampous ◽  
Efsevia Fragkou ◽  
Konstantinos A. Kormas ◽  
Alexandre B. De Menezes ◽  
Paraskevi N. Polymenakou ◽  
...  

The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 457
Author(s):  
Piotr Fabijańczyk ◽  
Jarosław Zawadzki

The purpose of this study was to use fast geophysical measurements of soil magnetic susceptibility (κ) as supplementary data for chemical measurements of selected light rare earth elements (REEs) in soil. In order to ensure diversity in soil conditions, anthropogenic conditions and types of land use, seven areas were selected, all located in regions subjected to past or present industrial pollution. Magnetometric parameters were measured using a selected magnetic sensor that was specially designed for measurements of soil cores and were used to classify collected soil cores into six distinctive types. The analysis of REEs concentrations in soil was carried out taking into account the grouping of collected soil samples based on the type of study area (open, forested and mountain), and additionally on the measured magnetometric parameters of collected soil cores. A use of magnetometric measurements provided different, but complementary to chemical measurements information, which allowed to obtain deeper insight on REEs concentrations in soils in studied areas.


2021 ◽  
Author(s):  
Benjamin Costerousse ◽  
Joel Quattrini ◽  
Roman Grüter ◽  
Emmanuel Frossard ◽  
Cécile Thonar

Abstract Purpose Green manuring can increase the plant available fraction of zinc (Zn) in soil, making it a potential approach to increase wheat Zn concentrations and fight human Zn deficiency. We tested whether green manure increases the ability of both the native soil bacteria and inoculated Zn solubilizing bacteria (ZSB) to mobilize Zn. Methods Wheat was grown in a pot experiment with the following three factors (with or without); (i) clover addition; (ii) soil x-ray irradiation (i.e. elimination of the whole soil biota followed by re-inoculation with the native soil bacteria); and (iii) ZSB inoculation. The incorporation of clover in both the irradiated and the ZSB treatments allowed us to test green manure effects on the mobilization of Zn by indigenous soil bacteria as well as by inoculated strains. Results Inoculation with ZSB did neither increase soil Zn availability nor wheat Zn uptake. The highest soil Zn availabilities were found when clover was incorporated, particularly in the irradiated soils (containing only soil bacteria). This was partly associated with the stimulation of bacterial activity during the decomposition of the incorporated green manure. Conclusion The results support that the activity of soil bacteria is intimately involved in the mobilization of Zn following the incorporation of green manure.


2010 ◽  
Vol 34 (3) ◽  
pp. 985-992 ◽  
Author(s):  
Roseli Freire Melo ◽  
Luiz Eduardo Dias ◽  
Jaime Wilson Vargas de Mello ◽  
Juraci Alves Oliveira

Arsenic has been considered the most poisonous inorganic soil pollutant to living creatures. For this reason, the interest in phytoremediation species has been increasing in the last years. Particularly for the State of Minas Gerais, where areas of former mining activities are prone to the occurrence of acid drainage, the demand is great for suitable species to be used in the revegetation and "cleaning" of As-polluted areas. This study was carried out to evaluate the potential of seedlings of Eucalyptus grandis (Hill) Maiden and E. cloeziana F. Muell, for phytoremediation of As-polluted soils. Soil samples were incubated for a period of 15 days with different As (Na2HAsO4) doses (0, 50, 100, 200, and 400 mg dm-3). After 30 days of exposure the basal leaves of E. cloeziana plants exhibited purple spots with interveinal chlorosis, followed by necrosis and death of the apical bud at the 400 mg dm-3 dose. Increasing As doses in the soil reduced root and shoot dry matter, plant height and diameter in both species, although the reduction was more pronounced in E. cloeziana plants. In both species, As concentrations were highest in the root system; the highest root concentration was found in E. cloeziana plants (305.7 mg kg-1) resulting from a dose of 400 mg dm-3. The highest As accumulation was observed in E. grandis plants, which was confirmed as a species with potential for As phytoextraction, tending to accumulate As in the root system and stem.


2019 ◽  
Vol 129 ◽  
pp. 60-70 ◽  
Author(s):  
Benjamin A. Musa Bandowe ◽  
Sophia Leimer ◽  
Hannah Meusel ◽  
Andre Velescu ◽  
Sigrid Dassen ◽  
...  

2021 ◽  
Vol 905 (1) ◽  
pp. 012001
Author(s):  
A K Salam ◽  
M Milanti ◽  
G Silva ◽  
F Rachman ◽  
I M T D Santa ◽  
...  

Abstract This study compared N HNO3 to other methods to determine plant available heavy metals in heavy-metal polluted soils. Soil samples were obtained from an experimental field treated with industrial waste after 22 years of the amendment and employed to conduct the comparative and correlation study. Soil samples were analyzed for Cu using various methods, planted in a glass house with several plants, and analyzed for soil and plant Cu and Zn. The relative strength of the chemical extractants followed the order of N HNO3 ≈ N HCl > Buffered DTPA ≈ Unbuffered DTPA > M CaCl2 ≈ N NH4OAc pH 7. A high correlation was observed for soil extracted Cu by M CaCl2 or N NH4OAc pH 7 or N HCl vs. Buffered DTPA and N HNO3 or N NH4OAc pH 7 vs. N HCl. High correlations of plant and soil Cu extracted by N HNO3 were shown by caisim, water spinach, land spinach, and corn, while plant and soil Zn were shown by caisim, water spinach, land spinach, and lettuce.


Author(s):  
Laura DOBOS ◽  
Carmen PUIA

Crude oil is a highly complex mixture of hydrocarbons amounting to hundreds of individual compounds with different chemical structure and molecular weight plus a series of lower molecular weight compounds other than hydrocarbons (phenols, thiols, naphthenic acids, heterocyclic compounds with N (pyridines, pyrrole, indole, s.o.) compounds S (alkyl thiols, thiophene, etc.) (Zarnea, 1994). Mineral oil and polycyclic aromatic hydrocarbons (PAHs) creates larger environmental problems. They are considered particularly dangerous. In this regard, EPA Agency from U.S.A. includes a number of polycyclic aromatic hydrocarbons under 16 priority pollutants, which require special attention. IARC (International Agency for Research on Cancer) has identified 15 types of polycyclic aromatic hydrocarbons including six of the 16 types of PAHs, identifiable by the USEPA as having carcinogenic properties (Chauhan Archana et al., 2008).


Sign in / Sign up

Export Citation Format

Share Document