Overwinter changes in Olsen phosphorus in a 24-year crop rotation study in southwestern Saskatchewan

1993 ◽  
Vol 73 (1) ◽  
pp. 123-128 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner

In the Canadian prairie, producers generally sample soils in the autumn for nutrient analyses, whereas calibration of crop responses has been made based on soils sampled in the spring prior to seeding. A recent report suggests that available phosphorus (P) in soil increases between autumn and spring. At Swift Current, Saskatchewan, we have monitored bicarbonate-extractable P (Olsen P) every autumn and spring for the past 24 years, in four cropping systems: continuous wheat (Cont W), fallow-wheat (F-W), and two fallow-wheat-wheat (F-W-W) rotations. The first three systems received nitrogen (N) and P each crop year, with one F-W-W rotation receiving only N. These data were analyzed to test the authenticity of the aforementioned observations. We found that although there were some apparent overwinter increases in Olsen P there were also some decreases. Further, because of the considerable variability in Olsen P, relatively few of the overwinter changes were significant (P = 0.10). Efforts to correlate the changes in Olsen P to overwinter temperature or precipitation were unsuccessful. We concluded that Saskatchewan soil testing laboratories need not make adjustments to P fertilizer recommendations to account for changes in overwinter soil test P levels. Key words: Soil testing, bicarbonate-extractable P, crop rotations, available P

HortScience ◽  
2006 ◽  
Vol 41 (7) ◽  
pp. 1690-1697 ◽  
Author(s):  
Stephanie C. Hamel ◽  
Joseph R. Heckman

Recent changes in soil testing methodology, the important role of P fertilization in early establishment and soil coverage, and new restrictions on P applications to turf suggest a need for soil test calibration research on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb), and perennial ryegrass (Lolium perenne L.). Greenhouse and field studies were conducted for 42 days to examine the relationship between soil test P levels and P needs for rapid grass establishment using 23 NJ soils with a Mehlich-3 extractable P ranging from 6 to 1238 mg·kg–1. Soil tests (Mehlich-1, Mehlich-3, and Bray-1) for extractable P were performed by inductively coupled plasma–atomic emission spectroscopy (ICP). Mehlich-3 extractable P and Al were measured to evaluate the ratio of P to Al as a predictor of need for P fertilizer. Kentucky bluegrass establishment was more sensitive to low soil P availability than tall fescue or perennial ryegrass. Soil test extractants Mehlich-1, Bray-1, or Mehlich-3 were each effective predictors of need for P fertilization. The ratio of P to Al (Mehlich-3 P/Al %) was a better predictor of tall fescue and perennial ryegrass establishment response to P fertilization than soil test P alone. The Mehlich-1, Bray-1, and Mehlich-3 soil test P critical levels for clipping yield response were in the range of 170 to 280 mg·kg–1, depending on the soil test extractant, for tall fescue and perennial ryegrass. The Mehlich-3 P/Al (%) critical level was 42% for tall fescue and 33% for perennial ryegrass. Soil test critical levels, based on estimates from clipping yield data, could not be determined for Kentucky bluegrass using the soils in this study. Soil testing for P has the potential to aid in protection of water quality by helping to identify sites where P fertilization can accelerate grass establishment and thereby prevent soil erosion, and by identifying sites that do not need P fertilization, thereby preventing further P enrichment of soil and runoff. Because different grass species have varying critical P levels for establishment, both soil test P and the species should be incorporated into the decision-making process regarding P fertilization.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 214-220 ◽  
Author(s):  
Sun Benhua ◽  
Cui Quanhong ◽  
Guo Yun ◽  
Yang Xueyun ◽  
Zhang Shulan ◽  
...  

Temporal changes in the concentrations of plant-available phosphorus (P) in soil (Olsen-P), total soil-P and P activation coefficient (the ratio of Olsen-P to residual-P (i.e. an approximation to total-P)) were measured in plots that received consistent inorganic nitrogen, phosphorus and potassium plus organic fertilizers annually. Maize and winter wheat crops were grown in rotation for 24 years. Olsen-P and P activation coefficient declined significantly in the earlier years (< 12 years) for treatments that did not include any P fertilizer, and increased over the same period for the P-fertilized treatments. The rates of change in the Olsen-P and P activation coefficient values were positively related to P balance. In the later years, the Olsen-P and P activation coefficient plateau values were positively related to the P balance.


1993 ◽  
Vol 73 (2) ◽  
pp. 173-181 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
F. Selles

Producers in western Canada have applied phosphorus (P) fertilizer to annual crops for many years. This has increased soil available P and gradually decreased the expected yield response to P fertilization, but yield responses to small amounts of P placed with the seed are still reported regardless of soil available P levels. Controlled growth chamber studies suggest that the P responses should be most apparent during cool, wet springs. This 24-yr field study compared the yields of two fallow–spring wheat–spring wheat (F–W–W) systems, one fertilized with N and P each crop year, and the other fertilized with only N. The study, which was part of a long-term crop rotation experiment, was conducted on an Orthic Brown Chernozemic loam at Swift Current, Saskatchewan. Bicarbonate-extractable P (Olsen P) in the 0- to 15-cm depth in spring of the treatment receiving no P remained relatively constant (about 19 kg ha−1) throughout the study, while P fertilizer application at 6.5 kg ha−1 yr−1 increased extractable soil P by about 0.9 kg ha−1 yr−1. However, this increase in available P has not reduced yield responses to seed-placed P over the years. Regression analysis showed that yield response to P on fallow soil was positively related to temperature between emergence and the three-leaf stage and to precipitation at dough stage, but negatively related to precipitation near seeding time. For wheat grown on stubble, response to P was negatively related to temperature between 10 and 16 June (i.e., about the three- to four-leaf stage) and positively to precipitation received at anthesis stage. We concluded that, although available P in prairie soils has probably increased in recent years, producers can still expect to receive a 10% yield increase when small amounts of P are applied with the seed.Key words: Crop rotations, bicarbonate-extractable P, Olsen P, temperature effects, effect of precipitation


1993 ◽  
Vol 73 (4) ◽  
pp. 555-565 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
G. E. Winkleman ◽  
G. P. Lafond

Inorganic phosphorus (P) is generally believed to be relatively immobile in Chernozemic soils. However, available P (e.g., Olsen-P) has been found at depth in some soils and this has been postulated to be either the result of leaching or of transportation by plant roots. Lagumes, in particular, are believed to be involved in the latter mechanism. A long-term (34-yr) crop rotation study conducted on a heavy clay, thin Black Chernozemic soil at Indian Head, Saskatchewan, was sampled to a depth of 4.5 m in May and September 1991, to determine the influence of fertilization, cropping frequency, legume green manure and legume-grass hay crops on Olsen-P distribution in the soil profile. The results indicated that Olsen-P may indeed leach in Chernozemic soils, especially when fallow-containing cropping systems are fertilized. It also appeared that deep-rooted legumes, such as sweetclover Melilotus officinalis L.) green manure and alfalfa-bromegrass (Medicago sativa L. — Bromus inermis Leyss) hay crops do increase Olsen-P in the subsoil, possibly through root decomposition in situ. Key words: Rotations, bicarbonate-soluble Pi, legumes, green manure, fertilizers


2021 ◽  
Vol 13 (8) ◽  
pp. 4401
Author(s):  
Jeffrey M. Novak ◽  
James R. Frederick ◽  
Don W. Watts ◽  
Thomas F. Ducey ◽  
Douglas L. Karlen

Corn (Zea mays L.) stover is used as a biofuel feedstock in the U.S. Selection of stover harvest rates for soils is problematic, however, because excessive stover removal may have consequences on plant available P and K concentrations. Our objective was to quantify stover harvest impacts on topsoil P and K contents in the southeastern U.S. Coastal Plain Ultisols. Five stover harvest rates (0, 25, 50, 75 and 100% by wt) were removed for five years from replicated plots. Grain and stover mass with P and K concentration data were used to calculate nutrient removal. Mehlich 1 (M1)-extractable P and K concentrations were used to monitor changes within the soils. Grain alone removed 13–15 kg ha−1 P and 15–18 kg ha−1 K each year, resulting in a cumulative removal of 70 and 85 kg ha−1 or 77 and 37% of the P and K fertilizer application, respectively. Harvesting stover increased nutrient removal such that when combined with grain removed, a cumulative total of 95% of the applied P and 126% of fertilizer K were taken away. This caused M1 P and K levels to decline significantly in the first year and even with annual fertilization to remain relatively static thereafter. For these Ultisols, we conclude that P and K fertilizer recommendations should be fine-tuned for P and K removed with grain and stover harvesting and that stover harvest of >50% by weight will significantly decrease soil test M1 P and K contents.


2016 ◽  
Vol 73 (12) ◽  
pp. 2953-2958 ◽  
Author(s):  
H. E. Andersen ◽  
J. Windolf ◽  
B. Kronvang

Abstract We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.


2003 ◽  
Vol 83 (4) ◽  
pp. 443-449 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer

Soil tests for available P may not be accurate because they do not measure the appropriate P fraction in soil. A sequential extraction technique (modified Hedley method) was used to determine if soil test P methods were accurately assessing available pools and if predictions of fertilizer response could be improved by the inclusion of other soil P fractions. A total of 145 soils were analyzed from field P fertilizer experiments conducted across Alberta from 1991 to 1993. Inorganic P (Pi) removed by extraction with an anion-exchange resin (resin P) was highly correlated with the Olsen and Kelowna-type soil test P methods and had a similar relationship with P fertilizer response. No appreciable improvement in the fit of available P with P fertilizer response was achieved by including any of the less available P fractions in the regression of P fertilizer response with available P. Little Pi was extractable in alkaline solutions (bicarbonate and NaOH), particularly in soils from the Brown and Dark Brown soil zones. Alkaline fractions were the most closely related to resin P, but the relationship depended on soil zone. Inorganic P extractable in dilute HCl was most strongly correlated with soil pH, reflecting accumulation in calcareous soils, while Pi extractable in concentrated acids (HCl and H2SO4) was most strongly correlated with clay concentration. A positive but weak relationship as observed between these fractions and resin P. Complete fractionation of soil P confirmed that soil test P methods were assessing exchangeable, plant-available P. Key words: Hedley phosphorus fractionation, resin, Olsen, Kelowna


2013 ◽  
Vol 59 (No. 11) ◽  
pp. 530-536 ◽  
Author(s):  
S. Wang ◽  
X. Liang ◽  
G. Liu ◽  
H. Li ◽  
X. Liu ◽  
...  

The effects of phosphorus (P) fertilizer on P loss potential, soil Olsen-P and neutral phosphatase activities in paddy soils fertilized with superphosphate or pig manure (PM) were evaluated in this paper. Data were collected from a field experiment in the Tai Lake Basin, China. Superphosphate rates were 0, 17.5, 26.7, and 35.0 kg P/ha, and PM rates were 0, 1.4, 2.1, and 2.8 t/ha for each crop, respectively. Soil Olsen-P in the plow layer increased to a greater extent with PM than with superphosphate. Pig manure increased neutral phosphatase activities in the plow layer compared with PM-free treatment. In contrast, superphosphate inhibited neutral phosphatase activities compared with superphosphate-free treatment. Spring application of P fertilizer markedly increased the total P of surface water in November (< 0.01 vs. 0.10 mg/L) compared with P-free treatment. The total P of shallow groundwater at a 75 cm depth was ~0.01 mg/L. Phosphorus fertilizer did not influence Olsen-P or neutral phosphatase activities under the plow layer. Downward movement of P did not occur. Appropriate rate of P application of 26.2 kg P/ha for each crop in this soil reduced the risk of P loss in the paddy wetland ecosystem.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Muhammad Naeem ◽  
Noman Mehboob ◽  
Muhammad Farooq ◽  
Shahid Farooq ◽  
Shahid Hussain ◽  
...  

This two-year study observed the influence of various barley-based cropping systems on soil physicochemical properties, allometric traits and biomass production of barley sown under different tillage systems. Barley was cultivated in different cropping systems (CS), i.e., fallow-barley (fallow-B), maize-barley (maize-B), cotton-barley (cotton-B), mungbean-barley (mungbean-B) and sorghum-barley (sorghum-B) under zero tillage (ZT), minimum tillage (MT), strip tillage (ST), conventional tillage (CT) and bed-sowing (BS). Interaction between different CS and tillage systems (TS) positively influenced soil bulk density (BD), total porosity, available phosphorus (P), ammonical and nitrate nitrogen (NH4-N and NO3-N), available potassium (K), allometric traits and biomass production of barley. The highest soil BD along with lower total porosity were noted in ZT leading to lesser leaf area index (LAI), leaf area duration (LAD), specific leaf area (SLA), crop growth rate (CGR) and net assimilation rate (NAR) of barley. Nonetheless, bed-sown barley produced the highest biomass due to better crop allometry and soil physical conditions. The highest postharvest soil available P, NH4-N, NO3-N, and K were recorded for zero-tilled barley, while BS followed by CT recorded the lowest nutrient contents. Barley in mungbean-B CS with BS produced the highest biomass, while the lowest biomass production was recorded for barely sown in fallow-B cropping system with ZT. In conclusion, barley sown after mungbean (mungbean-B cropping system) with BS seems a pragmatic choice for improving soil fertility and subsequently soil health.


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 397 ◽  
Author(s):  
David Nash ◽  
Murray Hannah ◽  
Kirsten Barlow ◽  
Fiona Robertson ◽  
Nicole Mathers ◽  
...  

Phosphorus (P) exports from agricultural land are a problem world-wide and soil tests are often used to identify high risk areas. A recent study investigated changes in soil (0–20 mm), soil water and overland flow in 4 recently laser-graded (<1 year) and 4 established (laser-graded >10 years) irrigated pastures in south-eastern Australia before and after 3 years of irrigated dairy production. We use the results from that study to briefly examine the relationships between a series of ‘agronomic’ (Olsen P, Colwell P), environmental (water-extractable P, calcium chloride extractable P, P sorption saturation, and P sorption), and other (total P, organic P) soil P tests. Of the 2 ‘agronomic’ soil P tests, Colwell P explained 91% of the variation in Olsen P, and Colwell P was better correlated with the other soil tests. With the exception of P sorption, all soil P tests explained 57% or more of the total variation in Colwell P, while they explained 61% or less of Olsen P possibly due to the importance of organic P in this soil. Variations in total P were best explained by the organic P (85%), Calcium chloride extractable P (83%), water-extractable P (78%), and P sorption saturation (76%). None of the tests adequately predicted the variation in P sorption at 5 mg P/L equilibrating solution concentration. The results of this limited study highlight the variability between soil P tests that may be used to estimate P loss potential. Moreover, these results suggest that empirical relationships between specific soil P tests and P export potential will have limited resolution where different soil tests are used, as the errors in the relationship between soil test P and P loss potential are compounded by between test variation. We conclude that broader study is needed to determine the relationships between soil P tests for Australian soils, and based on that study a standard protocol for assessing the potential for P loss should be developed.


Sign in / Sign up

Export Citation Format

Share Document