scholarly journals Improving the crosslink density and the mechanical properties after vulcanization for an iron oxide layer (scale) and SBR/rubber masterbatch

2020 ◽  
Vol 54 (1) ◽  
pp. 71-78
Author(s):  
S. Bülbül
2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

2021 ◽  
pp. 50533
Author(s):  
Yasmine N. Baghdadi ◽  
Lucia Youssef ◽  
Kamal Bouhadir ◽  
Mohammad Harb ◽  
Samir Mustapha ◽  
...  

2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


2018 ◽  
Vol 115 ◽  
pp. 41-48 ◽  
Author(s):  
Patrycja Jutrzenka Trzebiatowska ◽  
Arantzazu Santamaria Echart ◽  
Tamara Calvo Correas ◽  
Arantxa Eceiza ◽  
Janusz Datta

1983 ◽  
Vol 18 (2) ◽  
pp. 599-604 ◽  
Author(s):  
D. Ritchie ◽  
H. A. Schaeffer ◽  
D. White
Keyword(s):  

2011 ◽  
Vol 17 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Gordana Markovic ◽  
Vojislav Jovanovic ◽  
Suzana Samarzija-Jovanovic ◽  
Milena Marinovic-Cincovic ◽  
Jaroslava Budinski-Simendic

In this paper the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM)/isobutylene-co-isoprene (IIR) rubber blends and chlorosulphonated polyethylene (CSM)/chlorinated isobutylene-co-isoprene (CIIR) rubber blends were carried out. Blends were prepared using a two roll-mill at a temperature of 40-50?C. The curing was assessed by using a Monsanto Oscillating Disc Rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160?. The stress-strain experiments were performed using tensile tester machine (Zwick 1425). Results indicate that the scorch time, ts2 and optimum cure time, tc90 increase with increasing CSM content in both blends. The values of modulus at 100% and at 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces.


2005 ◽  
Vol 21 (4) ◽  
pp. 319-331 ◽  
Author(s):  
G.K. Jana ◽  
C.K. Das

The de-vulcanization of rubber waste poses a challenging economical, environmental and social problem. We propose a new de-vulcanization process to re-use the rubber waste. It is a mechano-chemical process (MCP), where the waste is de-vulcanized by a combination of mechanical shearing, heat (110 °C) and the use of a de-vulcanizing agent (diallyl disulfide). A new look at the de-vulcanization mechanism and the influence of the de-vulcanizing agent on the mechanical properties of the ultimate re-vulcanized rubber is also presented. One of the most interesting observations is that the retention of tensile strength of the re-vulcanized rubber with respect to the original tyre was 34.9% when de-vulcanized in the absence of diallyl disulfide and 72.4% in its presence. The formation of extra crosslinks in those re-vulcanized rubbers containing disulfide was confirmed from crosslink density data and from TGA results. DMA analysis revealed that the storage modulus also increased for re-vulcanized rubber containing the disulfide.


2013 ◽  
Vol 750-752 ◽  
pp. 119-122 ◽  
Author(s):  
Xiao Ya Wang ◽  
Zhi Dong Xia ◽  
Zhe Li

This study was carried out to discuss the influence of curing temperature on the performance of conductive composites filled with nickel-coated graphite (NCG). The electrical conductivity, crosslink density, mechanical properties and tensile fracture morphology have been investigated. The results indicated that curing temperature had great impact on the electrical conductivity and mechanical properties. Voluem resistivity decreased from 43.1 to 0.08 ohm-cm at 125°C-205°C, and the reason was discussed in light of formation and break of the conductive network in the composites. The stability of SR-NCG cured at 165°C-205°C were also better than those cured at other curing temperature. Besides, tensile strength increased from 2.41 to 7.19Mpa at 125°C-225°C, elongation at break have a 56% increase, and Shore A hardness also incresed from 74 to 82.


Sign in / Sign up

Export Citation Format

Share Document