scholarly journals Curing and mechanical properties of chlorosulphonated polyethylene rubber blends

2011 ◽  
Vol 17 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Gordana Markovic ◽  
Vojislav Jovanovic ◽  
Suzana Samarzija-Jovanovic ◽  
Milena Marinovic-Cincovic ◽  
Jaroslava Budinski-Simendic

In this paper the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM)/isobutylene-co-isoprene (IIR) rubber blends and chlorosulphonated polyethylene (CSM)/chlorinated isobutylene-co-isoprene (CIIR) rubber blends were carried out. Blends were prepared using a two roll-mill at a temperature of 40-50?C. The curing was assessed by using a Monsanto Oscillating Disc Rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160?. The stress-strain experiments were performed using tensile tester machine (Zwick 1425). Results indicate that the scorch time, ts2 and optimum cure time, tc90 increase with increasing CSM content in both blends. The values of modulus at 100% and at 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces.

2016 ◽  
Vol 705 ◽  
pp. 40-44
Author(s):  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of BC content was the important factor in this study. It was that found tensile strength and elongation at break of NR filled BC (NR/BC) decreased with increasing BC content. The addition of BC into NR affect Mooney viscosity of NR/BC masterbatch, with increasing BC content, scorch time and cure time of their compound decreased.


2003 ◽  
Vol 76 (5) ◽  
pp. 1116-1127 ◽  
Author(s):  
N. Clythong ◽  
J. Wootthikanokkhan

Abstract Effects of curing temperature and accelerator type on tensile properties of natural-acrylic rubber blends (NR:ACM) were investigated. Three different types of accelerators namely, MBT, ZDEC and DPG, were separately compounded with the rubber blends (50/50, % w/w) along with stearic acid, ZnO, sodium stearate, and sulfur (S) on a two-roll mill. The compounded blends were vulcanized to their optimum cure time in a hydraulic press at 150 and 170 °C. Morphology and tensile properties of the rubber blends were determined by using a scanning electron microscope and a universal testing machine, respectively. Crosslinking characteristics of both NR and ACM phases in the rubber blends were investigated by using a swollen state 1H-NMR and a differential swelling technique. From the tensile test, it was found that strength and strain of the blend vulcanized with the S/ZDEC curing system were remarkably lower than those of the blends vulcanized with the S/MBT and S/DPG systems. The superior tensile properties of the two latter blending systems were accompanied by greater chain mobility of both of the NR and ACM molecules, along with a lower volume fraction of rubber in swollen gel (Vr) of the both NR and ACM phases. These changes were discussed in the light of various possibilities including curative distribution, which were affected by the accelerator type. In term of the effects of curing temperature, it was found that Vr and tensile properties of the blends did not significantly change with the temperature.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6045-6060
Author(s):  
Zafirah Zainal Abidin ◽  
Siti Nur Liyana Mamauod ◽  
Siti Salina Sarkawi ◽  
Nurshamimi Shahirah Binti Saimi

This research aimed to elucidate the effect of black and non-black filler systems on the cure characteristics and mechanical properties of butyl reclaimed rubber (BRR). In this study, BRR800 was the BRR investigated. Since reclaimed rubber is not entirely 100% rubber, actually being a mixture of rubber, carbon black, oil, zinc oxide, stearic acid and other compounding ingredients used in the original compounds, the reclaimed rubber content in each system was fixed at 161 parts per hundred (pphr). Each mixture was mixed using a two-roll mill. The fillers used in this study were carbon black and calcium carbonate. The Mooney viscosity, cure characteristics, crosslink density, and mechanical properties, such as hardness, abrasion resistance, compression set, tear strength, rebound resilience, and the tensile properties of the vulcanizates were investigated. The results showed that the Mooney viscosity of BRR800 filled with carbon black was increased effectively and had a faster curing time and higher crosslink density than BRR filled with calcium carbonate. In addition, except for compression set and elongation at break, the mechanical properties of BRR800 with a black filler system were higher than those of BRR800 with a non-black filler system.


2015 ◽  
Vol 754-755 ◽  
pp. 130-134 ◽  
Author(s):  
A.A. Afiratul ◽  
N.Z. Noimam ◽  
S.T. Sam ◽  
Hanafi Ismail ◽  
Mohamad Kahar Ab Wahab ◽  
...  

The effects of mechanical properties (tensile properties and resilience test) and morphology of recycled nitrile glove (NBRr) filled epoxidized natural rubbers (ENR25) were examined. Two different size ranges of NBRr particles, i.e., S1 (250μm-500μm) and S2(2cm-5cm) were used in this study. The NBRr/ENR25 compounds with five different compositions of NBRr (5, 15, 25, 35 and 50 phr) were prepared using a two roll-mill at room temperature. The result indicated that the tensile properties such as tensile strength and elongation at break decreased as the ratio of NBRr increased. Meanwhile stress at 100% elongation show an increasing trend with the addition of recycled nitrile glove in ENR25. The resilience properties of NBRr/ENR25 compounds decreased when NBRr loading increased. The scanning electron microscopy studies showed that the fine size, S1 of NBRr particles in NBRr/ENR25 compounds illustrated a better NBRr-ENR25 matrix interaction compared with coarse size, S2 of NBRr particles. The results overall indicated that the NBRr/ENR25 with fine size, S1 of NBRrparticles show better mechanical properties (tensile properties and resilience properties) and morphology compared to coarse size, S2 of NBRr particles.


2013 ◽  
Vol 858 ◽  
pp. 199-204
Author(s):  
Hoang T.B. Diep ◽  
Hanafi Ismail ◽  
A. Rashid Azura ◽  
Ng. Van Tu ◽  
Tsutomu Takeichi

Wollastonite filled natural rubber (NR) compounds were prepared using a laboratory two-roll mill. The filler was loaded into NR at different loading, i.e., 0, 10, 20, 30 and 40 part per hundred of rubber (phr). The effect of wollastonite on curing characteristic, tensile and morphology properties has been studied. Results indicated that the cure time (t90), scorch time (t2), tensile strength and elongation at break of the NR compounds decrease with increasing wollastonite loading but the maximum torque, tensile modulus M100 (stress at 100% elongation), M300 (stress at 100% elongation) increase with increasing wollastonite loading. The fracture surface morphology of the NR compounds was investigated with a scanning electron microscope (SEM). More filler detachment from NR surface was observed with increasing wollastonite loading.


2017 ◽  
Vol 744 ◽  
pp. 295-299
Author(s):  
Saowaluk Boonyod ◽  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of oleic acid (OA) containing in NR filled BC (NR/BC) was the important factor in this study. BC was varied from 0–25 parts per hundred parts of rubber (phr), and the Mooney viscosity, cure characteristics and mechanical properties of NR/BC with and without OA as compatiblizer was evaluated. It was found that tear strength and elongation at break of NR/BC containing OA improved. The addition of OA into NR/BC affect vulcanization properties of NR/BC masterbatch that retard the cure time of their compound. Of all BC contents investigated, the vulcanized NR/BC at 10-20 phr of BC with OA shows the optimum tear strength and the morphology of the vulcanized NR/BC is improved by the addition of OA.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ali Asghar Davoodi ◽  
Tal’at Khalkhali ◽  
Mohammad Mahdi Salehi ◽  
Soheil Sarioletlagh Fard

Nitrile rubber (NBR) based elastomer compounds containing different carbon black/silica composition ratios were prepared using laboratory-scale two roll mill. According the cure characterization results, addition of the reinforcing filler, either carbon black or silica, shortened the optimum cure time and also scorch time of samples compared to that of pure NBR gum where the optimum cure time and scorch time both decreased with increasing the silica content of hybrid filler. Analysis of mechanical properties showed that burst strength of carbon black-rich NBR compounds was higher compared to the samples containing silica. This is presumably due to the higher elongation at break observed in NBR/silica compounds revealing lower crosslink density. In fact, adsorption of curing agents onto the functional groups present at the silica surface would be responsible for the lower crosslink density. According to the Barlow’s formula, despite the higher tensile strength of NBR/silica compounds, higher elongation at break leads to the lower burst strength of NBR/silica/carbon black diaphragms.


2013 ◽  
Vol 33 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Shohreh Tolooei ◽  
Ghasem Naderi ◽  
Shirin Shokoohi ◽  
Sedigheh Soltani

Abstract Ternary elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR) and two types of nanoclay (Cloisite 15A and Cloisite 30B) were prepared using a laboratory scale two-roll mill. The effects of nanoclay composition on the cure characteristics, mechanical properties and morphology of NBR/BR (50/50) nanocomposite samples containing 3, 5, 7 and 10 wt% nanoclay were investigated. According to the cure characteristics both types of nanoclay caused a reduction in the scorch time and optimum cure time of the nanocomposite compound. X-ray diffraction patterns of all samples suggested the intercalation of polymer chains into the silicate layers. This was confirmed by transmission electron microscopy (TEM) micrographs. Dynamic mechanical thermal analysis (DMTA) was utilized to study the dispersion state of nanoclay within the elastomer blend matrix. The results showed the development of mechanical properties with the establishment of interactions between nanoclay and polymer chains. Antiknock and brake fluid uptake were also reduced with increasing the nanoclay content.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


Author(s):  
Md Mehtab Alam and B.S Motgi

The paper deals with detailed study on microstructure and mechanical properties of aluminum 7068 reinforced with fly ash and silicon carbide by powder metallurgy, aluminum 7068, silicon carbide and fly ash were taken in powder form of required size and mixed together in varying proportion according to specification and compacted with pressure of 400MPa using hydraulic press to make samples and then samples were sintered at 600°c for 2 hours, the samples were tested for density, compressive strength, hardness and microstructure was analyzed using scanning electron microscope, energy dispersive x-ray study was carried out in order to confirm presence of silicon carbide and fly ash in aluminum matrix.


Sign in / Sign up

Export Citation Format

Share Document