scholarly journals WARM DEFORMATION BEHAVIOR OF A 65MN SPRING STEEL

2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Peng-fei Zhang ◽  
De-cheng Wang ◽  
Peng Cheng ◽  
Chen-xi Shao ◽  
Jun-ying Zhou ◽  
...  

The warm deformation behavior of 65Mn spring steel has been carried out by a thermomechanical simulator. The deformation temperatures are in the range of 550 ~ 700℃ and strain rates are in the range of 0.001 ~ 1 s-1. The deformation activation energy is calculated to be 486.829 KJ•mol-1. The strain compensated Arrhenius-type constitutive model was established. The relationship materials constants and strain were fitted with an 8th order polynomial.  It was found that the strain has a significant influence on the instability map. At the strain is 0.3, the optimum flow zone may take place with the deformation temperatures higher than 626 ℃ and strain rate in the range of 0.001 ~ 1 s-1.

2013 ◽  
Vol 749 ◽  
pp. 88-95 ◽  
Author(s):  
Xiao Gang Hu ◽  
Bi Cheng Yang ◽  
Jun Xu ◽  
Hai Jun Wang

The hot deformation behavior of hypereutectic aluminium-silicon alloy was investigated by thermal simulation test at the deformation temperature of 330-480 and the strain rate of 0.1-10s-1using the Gleeble-1500 thermal mechanical simulator. The relationship of flow stress, temperature and strain rate was appropriately described by the deformation constitutive equation, and the deformation activation energy is 187.418 KJ/mol. In addition, the microstructures of these specimens were analyzed and the result showed that the inhomogeneous deformation enhances with increasing strain rate and decreasing deformation temperature, and the presence of primary silicon had a strong influence on the uneven deformation.


2011 ◽  
Vol 704-705 ◽  
pp. 147-150
Author(s):  
Xin Zhao ◽  
Xiao Ling Yang ◽  
Tian Fu Jing

The warm deformation behavior of as-quenched and as-annealed ASTM 1045 steel was studied by isothermal compression testing on a Gleeble3500 machine. The temperature range was 550-700°C and the strain rate range 0.001-0.1s-1. Transmission electron microscopy (TEM) was used to study the microstructures associated with the observed deformation phenomenons. The results show that the flow stress of quenched specimens is higher than that of annealed ones at 550°C when strain rates are greater than 0.001s-1. However, at 600-700°C and strain rate of 0.001s-1, the whole flow curves of quenched specimens are below that of annealed ones. Under the rest conditions, the flow stress of quenched specimens is higher at the beginning of compression and then the opposite is true after the strain is greater than a critical value. The microstructure examination proves that the dynamic recrystallization easily occurs in quenched specimens during warm compression, which results in the above phenomenons. Keywords: warm deformation, flow stress, steel, quenching, annealing


2012 ◽  
Vol 450-451 ◽  
pp. 1553-1556
Author(s):  
Hui Fan ◽  
Fu Zhong Wang

Hot compressive deformation behavior of non-modulation 33Mn2V steel for oil well tube was studied by compression tests using Gleeble-1500 thermal simulation machine conducted at the temperatures from 750°Cto 1200°Cand at the strain rates of 0.01 s−1 to 0.16 s−1. Using non-linear regression method to establish a Kumar model to predict the hot deformation behavior of 33Mn2V steel. Results show that the errors of the Kumar model between experimental data and calculated results are less than 10%. The deformation activation energy of 342.1841kJ/ mol. The average dynamically recrystallized grain size reduces with decreasing temperature.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2652
Author(s):  
Meng Liu ◽  
Quanyi Wang ◽  
Yifan Cai ◽  
Dong Lu ◽  
Tianjian Wang ◽  
...  

Tensile deformation behavior and microstructure of nickel-base superalloy Inconel 625 are investigated under different strain rates of 5 × 10−4 s−1 and 5 × 10−5 s−1. According to the experimental results, yield strength and ultimate tensile strength of the alloy increase with the increase in strain rate in room temperature. Microstructure results indicate that the size of dimples is smaller in the tensile fracture surface at low strain rate than the high strain rate, and the number of dimples is also related to the strain rates and twins appear earlier in the specimens with higher strain rates. Apart from Hollomon and Ludwik functions, a new formula considering the variation trend of strength in different deformation stages is deduced and introduced, which fit closer to the tensile curves of the 625 alloy used in the present work at both strain rates. Furthermore, the Schmid factors of tensile samples under two strain rates are calculated and discussed. In the end, typical work hardening behavior resulting from the dislocations slip behavior under different strain rates is observed, and a shearing phenomenon of slip lines cross through the δ precipitates due to the movement of dislocations is also be note.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


1999 ◽  
Vol 131 (1) ◽  
pp. 137-149 ◽  
Author(s):  
R.M. Trimble ◽  
C.A. Tyndall ◽  
B.D. McGarvey

AbstractNatural rubber sleeve stoppers were impregnated with 10 mg of (E)-10-dodecen-1-yl-acetate, the major component of spotted tentiform leafminer, Phyllonorycter blancardella (F.), pheromone. In the laboratory, there was a linear decline in the amount of pheromone remaining on stoppers during 8 weeks of exposure to 10, 15, 20, and 25 °C. At 30 and 35 °C, the relationship was curvilinear and could be described using a second-order polynomial equation. The estimated rate of evaporation ranged from 0.03 mg/day at 10 °C to 0.08 mg/day at 25 °C; the rate of evaporation at 30 and 35 °C varied with the time since first exposure. There was a linear decline in the amount of pheromone remaining on stoppers during 8 weeks of exposure to fluctuating temperature regimes with average temperatures of 10 °C (i.e., 5–15 °C) and 20 °C (i.e., 15–25 °C). At a fluctuating regime with an average temperature of 30 °C (i.e., 25–35 °C), the relationship was curvilinear and could be described using a second-order polynomial equation. The estimated rate of evaporation was 0.02 and 0.09 mg/day at 5–15 and 15–25 °C, respectively; the estimated daily rate of evaporation at 25–35 °C varied with the time since first exposure. In an orchard, the estimated average rate of evaporation of pheromone from stoppers ranged from 0.05 to 0.31 mg/day and did not vary significantly with temperature. During the first 4 weeks of exposure in an orchard, the observed rate of evaporation was up to 4.4-fold greater than the rate predicted using the relationship between evaporation rate and constant temperatures observed in the laboratory. The potential for using natural rubber sleeve stoppers as controlled-release substrates in studies of sex-pheromone-mediated mating disruption of P. blancardella is discussed.


2010 ◽  
Vol 139-141 ◽  
pp. 594-599
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng

The spring steel strip 50CrVA which is cold rolled was applied to manufacture the diaphragm of the automotive horn by means of sheet metal forming. The combination of the experiments with back-propagation artificial neural network (BPANN) is used to solve the springback problem of the diaphragm. Experiments have shown that a 4-8-1 BPANN is able to predict the springback of the diaphragm successfully, and the network is able to model the relationship between the springback of the diaphragm and the process parameters rationally. BPANN simulation results and experimental ones have shown that the springback of the diaphragm is particularly influenced by such parameters as blank thickness, Young’s modulus, punch radius and yield ratio. Furthermore, the springback of the diaphragm decreases with the increase of blank thickness and Young’s modulus, but increases with the increase of punch radius and yield ratio.


2013 ◽  
Vol 753-755 ◽  
pp. 241-244
Author(s):  
Peng Tian ◽  
Zhi Yong Zhong ◽  
Wei Jun Hui ◽  
Rui Guo Bai ◽  
Xing Li Zhang ◽  
...  

The hot compressive deformation behavior of SWRCH 35K was studied with uniaxial hot compression simulation tests at 923 ~ 1223 K and strain rate of 0.01 ~ 20 /s. The results show that the hot compressive deformation activation energy was 408 kJ/mol and the rang of deformation stored energy was 10 ~ 50 J/mol. The quadratic fitting expression between deformation stored energy and Zener-Hollomon parameter (Z) was established and the deformation stored energy was considered to increased with increasing Z or with lower deformation temperature and increasing deformation rate.


Sign in / Sign up

Export Citation Format

Share Document