Torque control of new energy four wheel hub motor based on distribution algorithm

Author(s):  
Shuai Leng ◽  
◽  
Liqiang Jin ◽  

Due to the nonlinear, strong coupling and uncertain parameters of the new energy four-wheel hub motor, it is more difficult to control the torque of the motor. In order to solve this problem, a torque control method of the new energy four-wheel hub motor based on the distribution algorithm is proposed. The dynamic model of the new energy four-wheel hub motor is established, and the unmeasurable flux, electric power and other state variables in the motor model are derived according to the degree of freedom of the body. The whole four-wheel hub motor is taken as the research object, and the optimal efficiency of the drive system is taken as the goal, and the distribution algorithm is used to control the electromagnetic torque of the motor. The simulation results show that after the torque control of new energy four wheel hub motor, the driving range of the vehicle is longer, the amplitude of stator flux changes little, the stator current changes and the stability of motor speed are good, and the torque control effect is better.

2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Anh Nguyen

The rollover phenomenon is a particularly dangerous problem. This phenomenon occurs when the driver travels at high speed and suddenly steers. Under the influence of centrifugal force, the body vehicle will be tilted and cause the wheels to lift off the road. To solve this problem, the method of using an active stabilizer bar has been proposed. The active stabilizer bar is controlled automatically by a previously designed controller. The performance of the active stabilizer bar depends on the selected control method. Previous research often only used a half-car dynamics model combined with a linear single-track dynamics model to simulate the vehicle’s oscillation. In addition, most of the research focuses only on the use of linear control methods for the active stabilizer bar. Therefore, the performance of the stabilizer bar is not guaranteed. This paper focuses on establishing the model of spatial dynamics combined with the nonlinear double-track dynamics model that fully describes the vehicle’s oscillation most accurately. Besides, the fuzzy control method is proposed to control the operation of the hydraulic stabilizer bar. This is a completely novel model, and it is suitable for the actual traveling conditions of the vehicle. Also, simulations are done based on different scenarios. The results of the paper showed that the values of the roll angle, the difference in the vertical force at the wheels, and the displacement of the unsprung mass were significantly reduced when the vehicle used the active stabilizer bar, which is controlled by an intelligent control method. Therefore, the stability and safety of the vehicle have been guaranteed. This result will be the basis for performing other more complex research in the future.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Mokh. Suseno Aji Sari ◽  
Hadi Suyono ◽  
Abraham Lomi

This research was conducted to regulate the three phase induction motor speed regulation system. Changes in load on the motor affect the motor speed response so it does not match the set point speed. This study uses the Direct Torque Control (DTC) method in regulating the speed of an induction motor. The DTC method is a vector control method that is directly assigned to the inverter. DTC method in controlling speed based on Proportional Integral Differential (PID) control. Determination of PID tunning using two methods, namely, ziegler-nichols and cohen-coon method. The ziegler-nichols method have overshoot speeds starting at 0.8% of the setpoint, whereas using the cohen coon method there is no overshoot and the speed at stable conditions matches the setpoint.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Changxin Luo ◽  
Humin Lei ◽  
Dongyang Zhang ◽  
Xiaojun Zou

An adaptive neural control method is proposed in this paper for the flexible air-breathing hypersonic vehicle (AHV) with constraints on actuators. This scheme firstly converts the original control problem with input constraints into a new control problem without input constraints based on the control input saturation function. Secondly, on the basis of the implicit function theorem, the radial basis function neural network (RBFNN) is introduced to approximate the uncertain items of the model. And the minimal-learning-parameter (MLP) technique is adopted to design the adaptive law for the norm of network weight vector, which significantly reduces calculations. Meanwhile, the finite-time convergence differentiator (FD) is introduced, through which the model state variables and their derivatives are accurately estimated to ensure the control effect. Finally, it is theoretically proved that the closed-loop control system is stable. And the effectiveness of the designed controller is verified by simulation.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Sachin Bhalekar ◽  
Varsha Daftardar-Gejji

Antisynchronization phenomena are studied in nonidentical fractional-order differential systems. The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes for sufficiently large value of time variable. Active control method is used first time in the literature to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial and Chen systems, and Lü and Financial systems. The stability analysis is carried out using classical results. We also provide numerical results to verify the effectiveness of the proposed theory.


2015 ◽  
Vol 713-715 ◽  
pp. 814-819
Author(s):  
Li Ping Zhang ◽  
Xu Guang Xin ◽  
Wei Ya Wang ◽  
Hai Feng Wu

The direct torque control (DTC) system of the traditional asynchronous motor has many disadvantages, such as complex modeling and large amount of calculation, In order to improve the dynamic performance of the DTC system of the asynchronous motor, a direct torque control system is put forward. It uses space vector analysis method to calculate electromagnetic torque and stator flux linkage of asynchronous motor directly, follows the change of the stator flux linkage and torque, omits the complicated calculation, reduces the dependence on motor parameters. The simulation model of the DTC system of the asynchronous motor was established using SIMULINK software package. The feasibility of method is proved in theory, The results of simulation show that the modeling and simulation of the system has good static and dynamic performance, control precision of the system is higher, the stability is better.


2013 ◽  
Vol 313-314 ◽  
pp. 488-493
Author(s):  
Wei Zhao ◽  
Qiang Wang ◽  
Lu Yan Wang

In order to increase the accuracy and real-time of grey prediction fuzzy direct torque control system, an improved grey prediction fuzzy direct torque control method was advanced. The equal-dimensional new information model was used to construct the new grey prediction model. The position angle of motor stator flux was divided into sectors, by which the simplified fuzzy algorithm was obtained. The simulation results show that the improved method can greatly overcome the shortcomings caused by the original method, such as the overlarge dimensions of original time sequence and the decrease of effective information amount due to the lasting of time. The calculation quantity in prediction process is reduced. The precision of prediction and the real-time of fuzzy control system are increased. The instability of stator flux is lowered and the speed respond of motor is meliorated.


2012 ◽  
Vol 614-615 ◽  
pp. 1185-1189
Author(s):  
Xiao Peng ◽  
Mo Fa Li ◽  
Yong Jian Li

The inverter switch state is based on the torque error and the stator flux amplitude error in the hysteretic controller which is adopted on the traditional direct torque control for the brushless doubly-fed machine, in this way, current and flux are distorted that results torque ripple in low speed range, even more influents control effect of the whole system. According to this problem, a new direct torque control method with fuzzy-PI regulator for the brushless doubly-fed machine is presented in this paper, applying the fuzzy theory to design controller parameters. The simulation results show that the method is effective to improve the dynamic characteristics of the motor, reduce the torque ripple, improve the speed and the torque control precision, and expand the direct torque control system of speed range.


Sign in / Sign up

Export Citation Format

Share Document