Control Process Modelling of Thermodynamic Systems Containing a Thermal Energy Storage Tank

2021 ◽  
Vol 12 (1(43)2021) ◽  
pp. 24-42
Author(s):  
Oktawia DOLNA ◽  
◽  
Robert MATYSKO ◽  
Weronika WISNIEWSKA,

The article content constitutes the answer to a growing interest of a heat-flow processes automatisation applied into detached houses heating sector. The paper contains a brief description of a usage of the PID and fuzzy controllers. The methods of the controller’s setting selections (e.g. Ziegler-Nichols method), which are alternative to the classical ones, have been also presented within the paper. The optimization of the controllers’ settings for the executive systems of a thermodynamic cycle is also available in the paper. It was carried out based on the minimum heat flux increase time in the condenser unit of a heat storage tank. For this purpose the Simplex Neldera- Meada algorithm was used. In the article, the results of the changeable work of the thermal energy storage tank have also been presented. The analysis was carried out in the Matlab Simulink environment.

2019 ◽  
Vol 111 ◽  
pp. 01100
Author(s):  
Rok Koželj ◽  
Žiga Ahčin ◽  
Eva Zavrl ◽  
Uroš Stritih

One of the great challenges in the energy sector represents retrofit of residential buildings where 3/4 of buildings in Europe are residential. To reduce energy consumption and increase the use of renewables in existing residential buildings a holistic approach of retrofit with interconnected technological system is needed. In the present paper energy toolkit based on the synergetic interaction between technologies integrated in the system for holistic retrofit of residential buildings which is under development within HEART project (HORIZON 2020) is presented. In this project step towards self-sufficient heating and cooling of building is made with an increase in on-site consumption of self-produced energy in PV from solar energy, where produced electrical energy is used also for heat pump operation. In this case thermal energy storage plays an important role for storing heat or cold for time when solar energy is not available. Improvement of sensible thermal energy storage with implemented cylindrical modules at the top of the heat storage tank and filled with phase change material is investigated experimentally. 43 litres of paraffin with phase change temperature between 27 °C and 29 °C was used in a system, what represented 15 % of total volume of heat storage tank. The results from experiment shows that thermal energy storage unit with integrated modules filled with phase change material can supply desired level of water temperature for twice as long at smaller temperature level as sensible thermal energy storage what is the consequence of higher energy density that can be stored during phase change. The advantage of phase change materials is in thermal energy storage for applications that needs narrow temperature range of supplying and storing thermal energy what is the subject matter of consideration in the case of HEART project.


2021 ◽  
Vol 11 (11) ◽  
pp. 4848
Author(s):  
Hitoshi Kiyokawa ◽  
Hiroki Tokutomi ◽  
Shinichi Ishida ◽  
Hiroaki Nishi ◽  
Ryo Ohmura

Kinetic characteristics of thermal energy storage (TES) using tetrabutylammonium acrylate (TBAAc) hydrate were experimentally evaluated for practical use as PCMs. Mechanical agitation or ultrasonic vibration was added to detach the hydrate adhesion on the heat exchanger, which could be a thermal resistance. The effect of the external forces also was evaluated by changing their rotation rate and frequency. When the agitation rate was 600 rpm, the system achieved TES density of 140 MJ/m3 in 2.9 hours. This value is comparable to the ideal performance of ice TES when its solid phase fraction is 45%. UA/V (U: thermal transfer coefficient, A: surface area of the heat exchange coil, V: volume of the TES medium) is known as an index of the ease of heat transfer in a heat exchanger. UA/V obtained in this study was comparable to that of other common heat exchangers, which means the equivalent performance would be available by setting the similar UA/V. In this study, we succeeded in obtaining practical data for heat storage by TBAAc hydrate. The data obtained in this study will be a great help for the practical application of hydrate heat storage in the future.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3294
Author(s):  
Carla Delmarre ◽  
Marie-Anne Resmond ◽  
Frédéric Kuznik ◽  
Christian Obrecht ◽  
Bao Chen ◽  
...  

Sorption thermal heat storage is a promising solution to improve the development of renewable energies and to promote a rational use of energy both for industry and households. These systems store thermal energy through physico-chemical sorption/desorption reactions that are also termed hydration/dehydration. Their introduction to the market requires to assess their energy performances, usually analysed by numerical simulation of the overall system. To address this, physical models are commonly developed and used. However, simulation based on such models are time-consuming which does not allow their use for yearly simulations. Artificial neural network (ANN)-based models, which are known for their computational efficiency, may overcome this issue. Therefore, the main objective of this study is to investigate the use of an ANN model to simulate a sorption heat storage system, instead of using a physical model. The neural network is trained using experimental results in order to evaluate this approach on actual systems. By using a recurrent neural network (RNN) and the Deep Learning Toolbox in MATLAB, a good accuracy is reached, and the predicted results are close to the experimental results. The root mean squared error for the prediction of the temperature difference during the thermal energy storage process is less than 3K for both hydration and dehydration, the maximal temperature difference being, respectively, about 90K and 40K.


2021 ◽  
Vol 238 ◽  
pp. 03004
Author(s):  
Abdullah Bamoshmoosh ◽  
Gianluca Valenti

The sector of thermal energy storage shows a number of alternatives that could have a relevant impact on the future of energy saving as well as renewable energy technologies. Among these, latent heat thermal energy storage technologies show promising results. Technologies that exploit solid-liquid phase change have already been widely proposed, but those technologies show common drawbacks limiting their application, such as high cost, low energy storage density and particularly low heat transfer properties. This work proposes to exploit the liquid-vapor phase transition in closed and constant volumes because it shows higher heat transfer properties. Consequently, the objective is to assess its energy storage performances in target temperature ranges. With respect to previous activity by the authors, this work proposes an exergy analysis of these systems, gives a methodology their deployment, and proposes a comparison between a new storage condition for solar thermal domestic hot water systems exploiting vapor-liquid equilibrium and conventional technologies. The exergy analysis is performed in reduced terms in order to have a generalized approach. Three hypothetical fluids with increasing degree of molecular complexity are considered in order to have a complete overview of the thermodynamic behavior of potential heat storage fluids. The analysis shows that the increased pressure of liquid systems has a major impact on exergy, resulting in vapor-liquid systems having less than 50% of the exergy variation of pressurized liquid systems. This is proven to have no impact on thermal energy storage. For the case study, the proposed methodology indicates that water itself is a strong candidate as a heat storage fluid in the new condition. Comparison shows that the new condition has a higher energy storage capacity at same volume. The useful temperature range is increased by 108% by setting a 10.5% volume vapor fraction at ambient temperature. The resulting improvement gives a 94% higher energy storage, with a maximum operating pressure of the system of less than 5 bar.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
R. A. Wirtz ◽  
K. Swanson ◽  
M. Yaquinto

An important design objective that is unique to hand-held units is the need to constrain two temperatures: the maximum temperature of the electronic components and the maximum skin temperature of the hand-held unit. The present work identifies and evaluates, through parametric modeling and experiments, the passive thermal energy storage volume characteristics and phase change material composite properties that are most suitable for thermal control of small form-factor, high power-density, hand-held electronics. A one-dimensional transient analytical model, based on an integral heat balance, is formulated and benchmarked. The model accurately simulates the heat storage/recovery process in a semi-infinite, “dry” phase change material slab. Dimensional analysis identifies the time and temperature metrics and nondimensional parameters that describe the heat storage/release process. Parametric analysis illustrates how changes in these nondimensional parameters affect thermal energy storage volume thermal response.


Author(s):  
Shahim Nisar

Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.


2020 ◽  
Vol 19 ◽  
pp. 100573 ◽  
Author(s):  
George Dogkas ◽  
John Konstantaras ◽  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
Christos Pagkalos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document