scholarly journals Effect of activation temperature on surface basicity of natural aluminosilicates

Author(s):  
Lyudmila A. Novikova ◽  
Natalia A. Khodosova Natalia A. ◽  
Larissa I. Belchinskaya ◽  
Frank Roessner

Montmorillonite and nontronite are layered aluminosilicates of smectite group minerals widely demanded in many industries owing to their unique physical-chemical and other properties. By thermal activation of raw clays there are variations in their porosity, surface area and physical-chemical properties, including formation and redistribution of surface active site of acid-base or redox character. The aim of present studies included investigation of the effect of thermal activation on the character of distribution and a number of basic sites on the surface of natural layered aluminosilicates by means of the new method of inverse thermoprogrammed desorption of СО2. Samples of natural aluminosilicates rich in montmorillonite (Montmorillonite 67%, illite 5%, quartz 5%, feldspars 21%) and nontronite (nontronite 70%, illite 10%, kaolinite 5%, quartz 10%, feldspars 8%) were characterized by XRD, XRF, BET N2 adsorption techniques. To probe surface basicity and determine the number of basic sites a new iTPD-CO2 was used. Prior the iTPD-CO2 measurement 100 mg of a sample was activated at 200, 300, 400oC, then cooled down and loaded with CO2 (3ml/min flow rate of CO2 for30 min). Next, the reactor was flushed by 5 ml/min N2-flow to desorb weakly sorbed CO2. The iTPD-CO2 profiles were recorded within 20-800oC at a 20oC/min heating rate and treated using ChemStation software. The experimental profiles of CO2 desorption for Mt and Nt samples observed two temperature regions. Low temperature peaks evolved around 80-90oC for Mt and between 110-127oC for Nt were most likely related to the weak basic sites, whereas high temperature peaks around 510 and 620oC for Mt and above 320oC for Nt testified to stronger ones. The reasoning of the obtained iTPD-profiles was done considering thermal behavior of layered aluminosilicates. The total basicity of Nt and Mt samples was 359.2 and 209.9 mmol/g respectively. The 1.6 times higher basicity of Nt was, obviously, caused by its phase and chemical composition and developed surface area and porosity. At higher activation temperatures the number of weak basic sites related to hydroxyl groups of adsorbed water molecules gradually decreased, namely, by 21 times for Mt and by 2.8 times for Nt. Dehydroxylation of structural Al-OH, Fe-OH, Mg-OH above 200oC, which becomes irreversible above 300oC, provided formation of residual oxygen atoms and their contribution to population of stronger basic sites. In accordance with thermal behavior of dioctahedral smectites, is assumed that strong basic sites of Mt are trans- and cis-vacant Al-OH groups dehydroxylating correspondingly at ~550 and 650oC. Fe-rich sample of Nt rapidly lost hydroxyls at rather lower temperatures that resulted in more heterogeneous distribution of strong basic sites of varying strength. At higher activation temperatures the ratio of stronger sites number to weak sites increased from 23 to 200 for Mt, whereas for Nt this ratio varied between 54-67 times. In general, total basicity of Mt and Nt decreased by 2.2-2.3 times as a result of their dehydration and dehydroxylation by thermal activation. The normalized values of basicity per unit surface area (BΣ/S, mmol/m2) were 1,5 times higher for Mt surface, testifying to higher occupancy and density of active sites for Mt than that of Nt.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


1984 ◽  
Vol 66 (1) ◽  
pp. 411-429
Author(s):  
F.H. White ◽  
K. Gohari

Desmosomes in stratified squamous epithelia appear to exhibit quantitative alterations during differentiation. In this work we use stereological and other morphometric methods to quantify these structures in epithelial cells from defined basal, spinous and granular strata. Hamster cheek pouch mucosa from five animals was processed for electron microscopy using strictly standardized techniques and a stratified random sampling procedure was used to obtain micrographs of cells from basal, spinous and granular layers. Stereological intersection counting techniques were used to determine for each layer the relative surface area of plasma membrane occupied by desmosomes (Ss), the number of desmosomes per unit surface area of plasma membrane (Ns), the mean individual desmosomal diameter (delta) and the mean individual desmosomal surface area (s). In addition, estimates of nuclear volume were obtained by direct measurement of nuclear profiles and volume-to-surface ratios were obtained by a combination of point and intersection counting, which enabled estimates for the volume (Vcell) and plasma membrane surface area (SPM) of the ‘average’ cell within each stratum to be acquired. Using this information, it was then possible to calculate both the total surface area (S) and the number (N) of desmosomes on the plasma membranes of average cells. The parameters Ss and Ns showed progressive increases between basal and granular layers, whereas values for delta and s were lower in granular cells when compared with basal and spinous cells. The parameters Vcell, SPM, S and N all increased progressively and significantly during differentiation. Between basal and granular layers, the mean cell volume and surface area had each increased approximately threefold, whereas the surface area and number of desmosomes on the average cell plasma membrane had increased approximately seven- and eleven-fold, respectively. Granular cells thus possess more numerous desmosomes, which occupy a greater proportion of the plasma membrane area but which are individually smaller, when compared with basal and spinous layers.


1983 ◽  
Vol 4 ◽  
pp. 14-18 ◽  
Author(s):  
Raymond A. Assel

A digital ice-concentration database spanning 20 years (1960 to 1979) was established for the Great Lakes of North America. Data on ice concentration, i.e. the percentage of a unit surface area of the lake that is ice-covered, were abstracted from over 2 800 historic ice charts produced by United States and Canadian government agencies. The database consists of ice concentrations ranging from zero to 100% in 10% increments for individual grid cells of size 5 × 5 km constituting the surface area of each Great Lake. The data set for each of the Great Lakes was divided into half-month periods for statistical analysis. Maxinium, minimum, median, mode, and average ice-concentrations statistics were calculated for each grid cell and half-month period. A lakewide average value was then calculated for each of the half-month ice-concentration statistics for all grid cells for a given lake. Ice-cover variability and the normal extent and progression of the ice cover is discussed within the context of the lakewide averaged value of the minimum and maximum ice concentrations and the lakewide averaged value of the median ice concentrations, respectively. Differences in ice-cover variability among the five Great Lakes are related to mean lake depth and accumulated freezing degree-days. A Great Lakes ice atlas presenting a series of ice charts which depict the maximum, minimum, and median icecover concentrations for each of the Great Lakes for nine half-monthly periods, starting the last half of December and continuing through the last half of April will be published in 1983 by the National Oceanic and Atmospheric Administration (NOAA). The database will be archived at the National Snow and Ice Data Center of the National Environmental Satellite Data and Information Service (NESDIS) in Boulder, Colorado, USA, also in 1983.


Author(s):  
Jianan Wang

This paper draws the following conclusions on the nature of time by analyzing the relationship between time and speed, the relationship between time and gravitational field, the gravitational redshift of the photon, and the black-body radiation theorem: Time on an object is proportional to the amount of energy flowing out (or in) per unit time (observer’s time) per unit surface area of the object. When an object radiates energy outward: t'=μB(T) =μσT 4=μnhν/st Where t’ is the time on the object, μ is a constant, B(T) is the radiosity,the total energy radiated from the unit surface area of the object in unit time (observer’s time), σ is the Stefan-Boltzmann constant, T is the absolute temperature, n is the number of the photons radiated, ν is the average frequency of the photons radiated, s is the surface area of the object and t is the time on the observer. When the object radiates energy outward, the higher the energy density of the space (for example the stronger the gravitational field of the space), the smaller the radiosity B(T) of the object in the space, the longer the average wavelength of the light quantum emitted by the object, the slower the time on the object, the longer the life of the system. When the object radiates energy outward, the faster the object moves relative to the ether, the higher the energy density of the local space in which the object is located, the smaller the radiosity B(T) of the object, the longer the average wavelength of the light quantum radiated by the object, the slower the time on the object, and the longer the life of the system. When the object radiates energy outward, the higher the temperature of the object, the greater the object's radiosity B(T), the shorter the average wavelength of the light quantum radiated by the object, the faster the time on the object, and the shorter the life of the system. Applying the above conclusions about the nature of time, the author analyzes the Mpemba effect and the inverse Mpemba effect, and reaches the following conclusion: the Mpemba effect is the time effect produced when heat flows from objects into space, and the "inverse" Mpemba effect is the time effect produced when heat flows from space into objects.


2016 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
A.A. Atchabarova ◽  
R.R. Tokpayev ◽  
A.T. Kabulov ◽  
S.V. Nechipurenko ◽  
R.A. Nurmanova ◽  
...  

<p>Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-Emett-Taylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m<sup>2</sup>/g, for those on the based on mineral raw material, it is 153 m<sup>2</sup>/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes. Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V<sup>–1</sup> cm<sup>–2</sup>), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.</p>


1979 ◽  
Vol 57 (18) ◽  
pp. 2464-2469 ◽  
Author(s):  
David Victor Fikis ◽  
William John Murphy ◽  
Robert Anderson Ross

Infrared spectra of the surfaces of vanadium pentoxide and vanadium pentoxide containing 9.09 mol% caesium and potassium, as sulphates, have been determined after exposure to 2-propanol for various times. Interpretation of the spectra leads to the proposal that the principal source of catalyst activity may be associated with surface hydrogen and hydroxyl groups on V5+ and V4+ sites. The "stability" of the catalysts towards reduction by the alcohol was consistent with the activity series derived from kinetic measurements: V2O5 (pure) < V2O5 (Cs) < V2O5 (K). The degree of sample reduction has also been assessed qualitatively by measurements of the ratio of surface area before to that after reaction and the same catalyst sequence was established. The trend in surface area ratios was similar to that shown by the surface "Tammann" temperatures of vanadium pentoxide and alkali metal sulphates which has been taken to imply that the ease and (or) extent with which the sulphates enter into inter-solid reactions with the oxide in the preparation stage may exert influence on the subsequent reducibility of the individual members of the catalyst series.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 217-224 ◽  
Author(s):  
K. Sato ◽  
H. Sakui ◽  
Y. Sakai ◽  
S. Tanaka

Water purification using artificial wetlands and aquatic macrophyte is attracting attention as a purification technology that can create rich ecosystems while imposing a minimal load on the environment. Because an aquatic plant system requires a large surface area, design specifications and maintenance methods that can obtain the optimum purification effect per unit surface area must be established. Large experimental facilities have been constructed beside a polluted river flowing into Lake Kasumigaura and have been used for a three-year experiment using several kinds of aquatic plants. This report summarizes the characteristics and the design load of the aquatic plant system based on this study and results from other aquatic plant facilities.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3488 ◽  
Author(s):  
Masanori Suzuki ◽  
Shigehiro Maruyama ◽  
Norimasa Umesaki ◽  
Toshihiro Tanaka

Porous glass was prepared by the hydrothermal reaction of sodium borosilicate glass, and oxygen-ion characterization was used to identify the hydroxyl groups in its surface area. A substantial amount of “water” was introduced into the ionic structure as either OH− groups or H2O molecules through the hydrothermal reaction. When the hydrothermally treated glass was reheated at normal pressures, a porous structure was formed due to the low-temperature foaming resulting from the evaporation of H2O molecules and softening of the glass. Although it was expected that the OH− groups would remain in the porous glass, their distribution required clarification. Oxygen K-edge X-ray absorption fine structure (XAFS) spectroscopy enables the bonding states of oxygen ions in the surface area and interior to be characterized using the electron yield (EY) and fluorescence yield (FY) mode, respectively. The presence of OH− groups was detected in the O K-edge XAFS spectrum of the porous glass prepared by hydrothermal reaction with a corresponding pre-edge peak energy of 533.1 eV. In addition, comparison of the XAFS spectra obtained in the EY and FY modes revealed that the OH− groups were mainly distributed in the surface area (depths of several tens of nanometers).


Sign in / Sign up

Export Citation Format

Share Document