scholarly journals Application of Artificial Neural Network to Predict Biodiesel Yield from Waste Frying Oil Transesterification

2020 ◽  
Vol 5 (1) ◽  
pp. 62-74
Author(s):  
Agus Haryanto ◽  
Tri Wahyu Saputra ◽  
Mareli Telaumbanua ◽  
Amiera Citra Gita

Used frying oil (UFO) has a great potential as feedstock for biodiesel production. This study aims to develop an artificial neural  network  (ANN)  model  to  predict  biodiesel  yield produced from base-catalyzed transesterification of UFO. The experiment  was  performed  with  100  mL  of  UFO  at  three different  molar  ratios  (oil:methanol) (namely 1:4,  1:5,  and 1:6), conducted with reaction temperatures of  30 to 55oC (raised by 5oC), and reaction time of 0.25, 0.5, 1, 2, 3, 6, 8, and 10 minutes. Prediction model was based on ANN model consisting  of  three  layers  with  27  combinations  of  three activation  functions  (tansig,  logsig,  purelin).  All  activation function  architectures  were  trained  using  Levenberg- Marquardt train type with 126 data set (87.5%) and learning rate  of  0.001.  Model  validation  used  18  data  set  (12.5%) measured at reaction time of 8 min. Results showed that two ANN models with activation function of logsig-purelin-logsig and purelin-logsig-tansig be the best with RRMSE of 2.41% and  2.44%  with  R2  of  0.9355  and  0.9391,  respectively. Predictions   of   biodiesel   yield   using   ANN   models   are significantly better than those of first-order kinetics.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Author(s):  
Natasha Munirah Mohd Fahmi ◽  
◽  
Nor Aira Zambri ◽  
Norhafiz Salim ◽  
Sim Sy Yi ◽  
...  

This paper presents a step-by-step procedure for the simulation of photovoltaic modules with numerical values, using MALTAB/Simulink software. The proposed model is developed based on the mathematical model of PV module, which based on PV solar cell employing one-diode equivalent circuit. The output current and power characteristics curves highly depend on some climatic factors such as radiation and temperature, are obtained by simulation of the selected module. The collected data are used in developing Artificial Neural Network (ANN) model. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) are the techniques used to forecast the outputs of the PV. Various types of activation function will be applied such as Linear, Logistic Sigmoid, Hyperbolic Tangent Sigmoid and Gaussian. The simulation results show that the Logistic Sigmoid is the best technique which produce minimal root mean square error for the system.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2058 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Ahmed Al-AbdulJabbar ◽  
Khaled Abdelgawad

The drilling rate of penetration (ROP) is defined as the speed of drilling through rock under the bit. ROP is affected by different interconnected factors, which makes it very difficult to infer the mutual effect of each individual parameter. A robust ROP is required to understand the complexity of the drilling process. Therefore, an artificial neural network (ANN) is used to predict ROP and capture the effect of the changes in the drilling parameters. Field data (4525 points) from three vertical onshore wells drilled in the same formation using the same conventional bottom hole assembly were used to train, test, and validate the ANN model. Data from Well A (1528 points) were utilized to train and test the model with a 70/30 data ratio. Data from Well B and Well C were used to test the model. An empirical equation was derived based on the weights and biases of the optimized ANN model and compared with four ROP models using the data set of Well C. The developed ANN model accurately predicted the ROP with a correlation coefficient (R) of 0.94 and an average absolute percentage error (AAPE) of 8.6%. The developed ANN model outperformed four existing models with the lowest AAPE and highest R value.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hung Vo Thanh ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

Abstract Residual Oil Zones (ROZs) become potential formations for Carbon Capture, Utilization, and Storage (CCUS). Although the growing attention in ROZs, there is a lack of studies to propose the fast tool for evaluating the performance of a CO2 injection process. In this paper, we introduce the application of artificial neural network (ANN) for predicting the oil recovery and CO2 storage capacity in ROZs. The uncertainties parameters, including the geological factors and well operations, were used for generating the training database. Then, a total of 351 numerical samples were simulated and created the Cumulative oil production, Cumulative CO2 storage, and Cumulative CO2 retained. The results indicated that the developed ANN model had an excellent prediction performance with a high correlation coefficient (R2) was over 0.98 on comparing with objective values, and the total root mean square error of less than 2%. Also, the accuracy and stability of ANN models were validated for five real ROZs in the Permian Basin. The predictive results were an excellent agreement between ANN predictions and field report data. These results indicated that the ANN model could predict the CO2 storage and oil recovery with high accuracy, and it can be applied as a robust tool to determine the feasibility in the early stage of CCUS in ROZs. Finally, the prospective application of the developed ANN model was assessed by optimization CO2-EOR and storage projects. The developed ANN models reduced the computational time for the optimization process in ROZs.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guo-zheng Quan ◽  
Chun-tang Yu ◽  
Ying-ying Liu ◽  
Yu-feng Xia

The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former,Rand AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possessesη-values within±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model.


Author(s):  
Wan Nazirah Wan Md Adnan ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

In this work, baseline energy model development using Artificial Neural Network (ANN) with resampling techniques; Cross Validation (CV) and Bootstrap (BS) are presented. Resampling techniques are used to examine the ability of the ANN model to deal with a small dataset. Working days, class days and Cooling Degree Days (CDD) are used as ANN input meanwhile the ANN output is monthly electricity consumption. The coefficient of correlation (R) is used as performance function to evaluate the model accuracy. For this analysis, R is calculated for the entire data set (R_all) and separately for training set (R_train), validation set (R_valid) dan testing set (R_test). The closer R to 1, the higher similarities between targeted and predicted output. The total of two different models with several number of neurons are developed and compared. It can be concluded that all models are capable to train the network. Artificial Neural Network with Bootstrap Cross Validation technique (ANN-BSCV) outperforms Artificial Neural Network with Cross Validation technique (ANN-CV).  The 3-6-1 ANN-BSCV, with R_train = 0.95668, R_valid = 0.97553, R_test = 0.85726 and R_all = 0.94079 is selected as the baseline energy model to predict energy consumption for Option C IPMVP.


2014 ◽  
Vol 7 (4) ◽  
pp. 132-143
Author(s):  
ABBAS M. ABD ◽  
SAAD SH. SAMMEN

The prediction of different hydrological phenomenon (or system) plays an increasing role in the management of water resources. As engineers; it is required to predict the component of natural reservoirs’ inflow for numerous purposes. Resulting prediction techniques vary with the potential purpose, characteristics, and documented data. The best prediction method is of interest of experts to overcome the uncertainty, because the most hydrological parameters are subjected to the uncertainty. Artificial Neural Network (ANN) approach has adopted in this paper to predict Hemren reservoir inflow. Available data including monthly discharge supplied from DerbendiKhan reservoir and rain fall intensity falling on the intermediate catchment area between Hemren-DerbendiKhan dams were used.A Back Propagation (LMBP) algorithm (Levenberg-Marquardt) has been utilized to construct the ANN models. For the developed ANN model, different networks with different numbers of neurons and layers were evaluated. A total of 24 years of historical data for interval from 1980 to 2004 were used to train and test the networks. The optimum ANN network with 3 inputs, 40 neurons in both two hidden layers and one output was selected. Mean Squared Error (MSE) and the Correlation Coefficient (CC) were employed to evaluate the accuracy of the proposed model. The network was trained and converged at MSE = 0.027 by using training data subjected to early stopping approach. The network could forecast the testing data set with the accuracy of MSE = 0.031. Training and testing process showed the correlation coefficient of 0.97 and 0.77 respectively and this is refer to a high precision of that prediction technique.


Author(s):  
Poonpat Poonnoy ◽  
Ampawan Tansakul ◽  
Manjeet Chinnan

The drying rate of a mushroom undergoing microwave-vacuum (MV) drying (MVD) was controlled by moisture dissipation and was dependent on vacuum pressure levels. The main objective of this work was to develop artificial neural network (ANN) model to predict moisture ratio of MV-dried mushrooms. One-hidden-layer feed-forward ANN models were trained and validated with experimental data. The Levenberg-Marquardt algorithm was utilized in regulating the ANN model weights and biases. Inputs for ANN models were vacuum pressure and drying time. Output from ANN models was moisture ratio at a given drying time. Reduced chi-square (X 2) and root mean square error (RMSE), and residual sum of squares (RSS) of the results from ANN models were calculated and compared with those of a modified Page's model (an experimental-based mathematical model), which is commonly used in the literature. The X 2, RMSE, and RSS of the ANN model (2.272 x 10 -5, 4.023 x 10 -3, and 3.204 x 10 -3, respectively) were found to be lower than those of the modified Page's model (6.692 x 10 -4, 2.561 x 10 -2, and 12.98 x 10 -2, respectively). These results indicate that the feed-forward ANN model represented the drying characteristics of mushrooms better than the modified Page's model. Therefore, the ANN model could be considered as a better tool for estimation of the moisture content of mushrooms than by the modified Page's model.


2020 ◽  
Vol 32 (18) ◽  
pp. 14995-15006 ◽  
Author(s):  
Evgenii Malitckii ◽  
Eric Fangnon ◽  
Pedro Vilaça

Abstract Steels are the most used structural material in the world, and hydrogen content and localization within the microstructure play an important role in its properties, namely inducing some level of embrittlement. The characterization of the steels susceptibility to hydrogen embrittlement (HE) is a complex task requiring always a broad and multidisciplinary approach. The target of the present work is to introduce the artificial neural network (ANN) computing system to predict the hydrogen-induced mechanical properties degradation using the hydrogen thermal desorption spectroscopy (TDS) data of the studied steel. Hydrogen sensitivity parameter (HSP) calculated from the reduction of elongation to fracture caused by hydrogen was linked to the corresponding hydrogen thermal desorption spectra measured for austenitic, ferritic, and ferritic-martensitic steel grades. Correlation between the TDS input data and HSP output data was studied using two ANN models. A correlation of 98% was obtained between the experimentally measured HSP values and HSP values predicted using the developed densely connected layers ANN model. The performance of the developed ANN models is good even for never-before-seen steels. The ANN-coupled system based on the TDS is a powerful tool in steels characterization especially in the analysis of the steels susceptibility to HE.


2020 ◽  
Vol 69 (11-12) ◽  
pp. 595-602
Author(s):  
Hichem Tahraoui ◽  
Abd Elmouneïm Belhadj ◽  
Adhya Eddine Hamitouche

The region of Médéa (Algeria) located in an agricultural site requires a large amount of drinking water. For this purpose, the water analyses in question are imperative. To examine the evolution of the drinking water quality in this region, firstly, an experimental protocol was done in order to obtain a dataset by taking into account several physicochemical parameters. Secondly, the obtained data set was divided into two parts to form the artificial neural network, where 70 % of the data set was used for training, and the remaining 30 % was also divided into two equal parts: one for testing and the other for validation of the model. The intelligent model obtained was evaluated as a function of the correlation coefficient nearest to 1 and lowest mean square error (RMSE). A set of 84 data points were used in this study. Eighteen parameters in the input layer, five neurons in the hidden layer, and one parameter in the output layer were used for the ANN modelling. Levenberg Marquardt learning (LM) algorithm, logarithmic sigmoid, and linear transfer function were used, respectively, for the hidden and the output layers. The results obtained during the present study showed a correlation coefficient of <i>R</i> = 0.99276 with root mean square error RMSE = 11.52613 mg dm<sup>–3</sup>. These results show that obtained ANN model gave far better and more significant results. It is obviously more accurate since its relative error is small with a correlation coefficient close to unity. Finally, it can be concluded that obtained model can effectively predict the rate of soluble bicarbonate in drinking water in the Médéa region.


Sign in / Sign up

Export Citation Format

Share Document