scholarly journals Dependence of Carbon Dioxide Concentration and Relative Humidity in Didactic Room - Case Study

2017 ◽  
Vol 20 (1) ◽  
pp. 17-26
Author(s):  
Katarzyna Gładyszewska-Fiedoruk ◽  
Antonio Rodero-Serrano
2016 ◽  
Vol XV (2) ◽  
pp. 120-125
Author(s):  
Nina Nikolova. ◽  
Christo Angelov ◽  
Todor Arsov ◽  
Spasimir Pilev ◽  
Nina Nikolova

2009 ◽  
Vol 66 (2) ◽  
pp. 145-149 ◽  
Author(s):  
Ana Carolina de Souza Gigli ◽  
Marta dos Santos Baracho ◽  
Irenilza de Alencar Nääs ◽  
Douglas D'Alessandro Salgado ◽  
Débora Passos Alvarenga

Production of one day-old chick production is one of the most important segments in the poultry production business. Broiler chicken incubation environment needs to be homogeneous and adequate so hatchability and final product quality are not affected. This research aimed at evaluating environmental conditions inside a multi-stage setter in a commercial hatchery house. The incubator was split into six areas and data loggers placed in the geometric center to register temperature and relative humidity data; carbon dioxide concentration and number of colony forming units (CFU) of fungi were also sampled and analyzed; Kruskal-Wallis non-parametric test was used for statistical analysis; significant differences in temperature and relative humidity distribution inside the incubator (p < 0.05) were detected, but no differences were found in CO2 concentrations or CFU distribution inside the incubator (p > 0.05). Fungi incidence varied from average to good. Critical points were detected in all areas inside the setter.


2019 ◽  
Author(s):  
Mikhail Y. Verbitsky ◽  
Michael E. Mann ◽  
Byron A. Steinman ◽  
Dmitry M. Volobuev

Abstract. Detecting the direction and strength of the causality signal in observed time series is becoming a popular tool for exploration of distributed systems such as Earth's climate system. Here we suggest that in addition to reproducing observed time series of climate variables within required accuracy a model should also exhibit the causality relationship between variables found in nature. Specifically, we propose a novel framework for a comprehensive analysis of climate model responses to external natural and anthropogenic forcing based on the method of conditional dispersion. As an illustration, we assess the causal relationship between anthropogenic forcing (i.e., atmospheric carbon dioxide concentration) and surface temperature anomalies. We demonstrate a strong directional causality between global temperatures and carbon dioxide concentrations (meaning that carbon dioxide affects temperature stronger than temperature affects carbon dioxide) in both the observations and in (CMIP5) climate model simulated temperatures.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2304
Author(s):  
Martin Pieš ◽  
Radovan Hájovský ◽  
Jan Velička

The article describes the development and implementation of a complex monitoring system for measuring the concentration of carbon dioxide, ambient temperature, relative humidity and atmospheric pressure. The presented system was installed at two locations. The first was in the rooms at the Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava. The second was in the classrooms of the Grammar School and Secondary School of Electrical Engineering and Computer Science in Frenštát pod Radhoštěm. The article contains a detailed description of the entire measurement network, whose basic component was a device for measuring carbon dioxide concentration, temperature and relative humidity in ambient air and atmospheric pressure via wireless data transmission using IQRF® technology. Measurements were conducted continuously for several months. The data were archived in a database. The article also describes the methods for processing the data with statistical analysis. Carbon dioxide concentration was selected for data analysis. Data were selected from at least two different rooms at each location. The processed results represent the time periods for the given carbon dioxide concentrations. The graphs display in percent how much of the time students or employees spent exposed to safe or dangerous concentrations of carbon dioxide. The collected data were used for the future improvement of air quality in the rooms.


2018 ◽  
Vol 8 (1) ◽  
pp. 61-66 ◽  
Author(s):  
P. Kapalo ◽  
F. Domniţa ◽  
C. Bacoţiu ◽  
Nadija Spodyniuk

Abstract From various other studies, it is known that the maximum carbon dioxide concentration in different countries is between 1,000 ppm up to 1,500 ppm. Therefore, the research is focused on indoor environment, namely the production of pollutants from the persons inside office rooms. The article presents the trend of the carbon dioxide concentration from the occupants inside an office. It is examined the carbon dioxide production separately for men and women, for persons of different mass and for persons of different ages. It is also analyzed the carbon dioxide production during a sedentary and physical activities. In parallel with the production of carbon dioxide is presented the monitoring of the human pulse and blood pressure. All these parameters are monitored together with relative humidity and indoor air temperature. The aims of this paper is to describe the partial results of human respiration impact on indoor air quality in closed spaces and to research the connection between carbon dioxide concentration and human health.


Author(s):  
Vesna Lovec ◽  
Miroslav Premrov ◽  
Vesna Žegarac Leskovar

The experimental monitoring of carbon dioxide concentration was carried out in kindergartens in Slovenia, together with indoor air temperature and relative humidity, before and during the COVID-19 pandemic. The aim of the research was to estimate the practical impact of the pandemic on indoor air quality and thermal comfort. The case study sample included buildings with different architectural typology, which are predominantly present in the building stock of Slovenia. The monitoring process lasted for 125 days before and during the COVID-19 pandemic. The results have shown a better indoor air quality in kindergartens during the pandemic, mostly due to ventilation protocols and almost imperceptibly changed indoor air temperature. The COVID-19 pandemic affected air quality in kindergarten classrooms in Slovenia by reducing the average carbon dioxide concentration when children were present in classrooms by 30%.


Sign in / Sign up

Export Citation Format

Share Document