scholarly journals Pore Characteristics and Adsorption Properties of Activated Carbon Produced from Ampelodismos Mauritanicus Stems

Author(s):  
Amal Benhathat ◽  
Moussa Amrani

In this paper, the synthesis and characterization of Ampelodesmos mauritanicus stems activated carbon (AMSAC) were studied. The produced activated carbon by phosphoric acid activation followed carbonisation was characterized by N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy. Sorption potential of AMSAC for the removal of methylene bleu from water was investigated. The experimental data found that AMSAC had high Brunauer-Emmett-Teller (BET) surface area of 1293 m2/g and abundant pores with specific volume of 1.23 m3/g. FTIR analysis reveals various functional groups on the surface of AMSAC which can be play an important role for the adsorption process. Langmuir isotherm model fitted well the equilibrium data for the methylene bleu comparing to the Freundlich isotherm model; the monolayer sorption capacity of AMSAC was found to be 411.8 mg/g at 25 °C

2012 ◽  
Vol 18 (4-1) ◽  
pp. 497-508 ◽  
Author(s):  
Hussein Bahrami ◽  
Jaber Safdari ◽  
Ali Moosavian ◽  
Meisam Torab-Mostaedi

In this study, the adsorption of HF gas by three types of activated carbon has been investigated under vacuum condition. The effects of experimental parameters such as initial pressure of the HF gas, contact time and temperature on adsorption process have been investigated. The results showed that the adsorption of the HF gas onto activated carbon increased by increasing initial pressure of gas, while it decreased with increase in temperature. The Freundlich isotherm model fitted the equilibrium data better than the other isotherm models. Using Langmuir isotherm model, the maximum adsorption capacities of the first type, the second type and third type of activated carbon were 226.4, 268.8 and 258.9 mg/g, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that the adsorption process followed well pseudo-second-order kinetics. Thermodynamic parameters, the change of free energy (?G?), enthalpy (?H?) and entropy (?S?) of adsorption were calculated at the temperature range of 28-55?C. The results showed that the adsorption of HF on activated carbon is feasible, spontaneous and exothermic.


2011 ◽  
Vol 322 ◽  
pp. 93-97 ◽  
Author(s):  
Min Cong Zhu ◽  
Wei Qi ◽  
Yan Jie Mao ◽  
Yin Hu ◽  
Xin Qing ◽  
...  

In the present work, expanded graphite (EG) was prepared by microwave irradiation. Then, the expanded graphite/polyaniline (EG/PANi) composite was synthesized in the typical method. The samples of EG and EG/PANi were characterized by SEM and IR analysis techniques. Adsorption property of EG/PANi composite for removing the dye, reactive brilliant red K-2BP, from aqueous solution was investigated. The effects of initial dye concentration and contact time, pH, sorbent dosage on the adsorption process were studied. Experimental data were modelled by Langmuir and Freundlich isotherms. Langmuir isotherm model fitted well the equilibrium data for EG/PANi composite comparing to the Freundlich isotherm model. The uptake capacity of EG/PANi for K-2BP was found to be 1.03047 mg/g. The results indicated that EG/PANi composite is not an ideal sorbent used for reactive dye removal.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Song Xiuling ◽  
Du Huipu ◽  
Liu Shijun ◽  
Qian Hui

The adsorption of Ni(II) with D301R resin was investigated in this paper. The results showed that the saturated extent of adsorption Ni(II) by the resin was 84.3 mg/g. The equilibrium data of Ni(II) sorption was better described by Langmuir isotherm model (r2=0.994) while that of Ni(II) sorption also fitted in Freundlich isotherm model within the experimental concentration range. The amount of the constant (q0) of Ni(II) under 298 K in Langmuir model was 76.92 mg/g, which was close to the experimental results. The constant n was within 2–10 in Freundlich model; it was shown that adsorption of Ni(II) by the resin was easy to take place. The uptake kinetics followed the Lagergren pseudo-first-order rate equation (r2=0.9813). The particle diffusion controlled the adsorption process of Ni(II). The coefficient of the intraparticle diffusion increased with the increase of the pH values and the concentration of Ni(II) in aqueous solution. There was a drop of 20.1 cm−1for the bending vibration frequency of N–H bond. Results showed that the adsorption of Ni(II) by D301R anion exchange resin was the surface complexation through the infrared spectrum analysis.


2010 ◽  
Vol 7 (3) ◽  
pp. 967-974 ◽  
Author(s):  
N. Muthulakshmi Andal ◽  
V. Sakthi

Biosorption equilibrium and kinetics of Pb(II) and Hg(II) on coconut shell carbon (CSC) were investigated by batch equilibration method. The effects of pH, adsorbent dosage, contact time, temperature and initial concentration of Pb(II) and Hg(II) on the activated carbon of coconut shell wastes were studied. Maximum adsorption of Pb(II) occurred at pH 4.5 and Hg(II) at pH 6. The sorptive mechanism followed the pseudo second order kinetics. The equilibrium data were analysed by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The equilibration data fitted well with both Langmuir and Freundlich isotherm model. The Langmuir adsorption capacity for Pb(II) was greater than Hg(II). The mean free energy of adsorption calculated from Dubinin-Radushkevich (D-R) isotherm model indicated that the adsorption of metal ions was found to be by chemical ion exchange. Thermodynamic parameter showed that the sorption process of Pb(II) onto SDC was feasible, spontaneous and endothermic under studied conditions. A comparison was evaluated for the two metals.


2013 ◽  
Vol 832 ◽  
pp. 132-137 ◽  
Author(s):  
Azry Borhan ◽  
Mohd Faisal Taha ◽  
Athirah Amer Hamzah

The preparation of activated carbon from wood-based industrys residue is one of the most environmental friendly solutions of transforming negative-valued wastes to valuable materials. Wood sawdust was first chemically activated using potassium hydroxide, KOH and characterized by nitrogen adsorption-desorption isotherms measured in Micrometrices ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM). By manipulating three different parameters, the optimal activation conditions were found at temperature of 500°C, activation time of 60 min and impregnation ratio of 1:3. Results showed that the BET surface area, total pore volume and diameter of activated carbon were 1876.16 m2g-1, 0.88 cm3g-1and 6.93 nm, respectively. Nitrogen adsorption desorption isotherm analysis proved the existence of mesopores in activated carbon produced, suggesting that it can be effectively used as an adsorption material.


2016 ◽  
Vol 75 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Qiujin Jia ◽  
Wanting Zhang ◽  
Dongping Li ◽  
Yulong Liu ◽  
Yuju Che ◽  
...  

Hydrazinolyzed cellulose-graft-polymethyl acrylate (Cell-g-PMA-HZ), an efficient adsorbent for removal of Cd(II) and Pb(II) from aqueous solution, has been prepared by ceric salt-initiated graft polymerization of methyl acrylate from microcrystalline cellulose surface and subsequent hydrazinolysis. The influences of initial pH, contact time, and temperature on adsorption capacity of Cell-g-PMA-HZ as well as adsorption equilibrium, kinetic and thermodynamic properties were examined in detail. As for Cd(II) adsorption, kinetic adsorption can be explained by pseudo-second-order, while adsorption isotherm fits well with Langmuir isotherm model, from which maximum equilibrium adsorption capacity can be derived as 235.85 mg g−1 at 28 °C. Further thermodynamic investigation indicated that adsorption of Cd(II) by adsorbent Cell-g-PMA-HZ is endothermic and spontaneous under studied conditions. On the other hand, isotherm of Pb(II) adsorption fits well with Freundlich isotherm model and is more likely to be a physical-adsorption-dominated process. Consecutive adsorption–desorption experiments showed that Cell-g-PMA-HZ is reusable with satisfactory adsorption capacity.


2013 ◽  
Vol 394 ◽  
pp. 8-13
Author(s):  
Zong Qiang Zhu ◽  
Shuang Cao ◽  
Wen Hui Wei ◽  
Yi Nian Zhu

Static adsorption of Sb (III) on a porous biomorph-genetic composite of Fe2O3/Fe3O4/C (PBGC-Fe/C-B) was studied. The results showed that the kinetic curve of Sb (III) adsorption by PBGC-Fe/C-B had same change trend under initial concentration of 5, 10 and 50 mg/L. The fitting and regression analysis of four kinds of kinetic model indicated that, the adsorption kinetics of Sb (III) by the PBGC-Fe/C-B well follow the pseudo-second-order model (R2>0.9999). At different reaction temperature (25 °C, 35 °C and 45 °C), the adsorption capacity of Sb (III) by PBGC-Fe/C-B both increased with increasing the solution equilibrium concentration. While it showed a declined tendency with temperature increased. The Langmuir isotherm model (R2>0.98) and the Freundlich isotherm model (R2>0.95) had both better fitted with the equilibrium data.


2017 ◽  
Vol 76 (9) ◽  
pp. 2526-2534 ◽  
Author(s):  
Meimei Zhou ◽  
Weizhen Tang ◽  
Pingping Luo ◽  
Jiqiang Lyu ◽  
Aixia Chen ◽  
...  

Abstract Ureido-functionalized mesoporous polyvinyl alcohol/silica composite nanofibre membranes were prepared by electrospinning technology and their application for removal of Pb2+ and Cu2+ from wastewater was discussed. The characteristics of the membranes were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption analysis. Results show that the membranes have long fibrous shapes and worm-like mesoporous micromorphologies. Fourier transform infrared spectroscopy confirmed the membranes were successfully functionalized with ureido groups. Pb2+ and Cu2+ adsorption behavior on the membranes followed a pseudo-second-order nonlinear kinetic model with approximately 30 minutes to equilibrium. Pb2+ adsorption was modelled using a Langmuir isotherm model with maximum adsorption capacity of 26.96 mg g−1. However, Cu2+ adsorption was well described by a Freundlich isotherm model with poor adsorption potential due to the tendency to form chelating complexes with several ureido groups. Notably, the membranes were easily regenerated through acid treatment, and maintained adsorption capacity of 91.87% after five regeneration cycles, showing potential for applications in controlling heavy metals-related pollution and metals reuse.


2011 ◽  
Vol 396-398 ◽  
pp. 2384-2387
Author(s):  
Mao Sheng Tao ◽  
De Lian Yi ◽  
Lin Wu ◽  
Zhao Hui Ouyang ◽  
Hui Min Zhang ◽  
...  

Subscript textAn adsorbent has been prepared from Heishan coal by chemical activation with KOH, the activated carbon has a BET surface area of 801.53 m2/g, the meso-pore ratio is 89.63%, SEM image shows that it is very rich in pore structure. The activated carbon was used to adsorb malachite green from an aqueous solution in room temperature. The effects of pH, contact time and dosage have been studied. The results show that the adsorption of malachite green from aqueous solution onto Heishan coal-based activated carbon proceeds according to the pseudo-second-order model, the adsorption equilibrium data were better represented by the Langmuir isotherm than Freundlich isotherm.


2020 ◽  
Vol 82 (12) ◽  
pp. 2864-2876
Author(s):  
Hao Zhang ◽  
Yiming Sun ◽  
Shen Li ◽  
Xihui Li ◽  
Haifeng Zhou ◽  
...  

Abstract Furfural residue (FR) is an inevitable by-product of industrial furfural production. If FR is not managed properly, it will result in environmental problems. In this study, FR was used as a novel precursor for activated carbon (AC) production by H3PO4 activation under different conditions. Under optimum conditions, the prepared FRAC had high BET surface area (1,316.7 m2/g) and micro-mesoporous structures. The prepared FRAC was then used for the adsorption of Cr(VI). The effect of solution pH, contact time, initial Cr(VI) concentration, and temperature was systematically studied. Characterization of the adsorption process indicated that the experimental data were well-fitted by the Langmuir isotherm model and pseudo-second-order kinetics model. The maximum adsorption capacity of 454.6 mg/g was achieved at pH 2.0, which was highly comparable to the other ACs reported in the literatures. The preparation of FRAC using H3PO4 activation can make use of FR's characteristic acidity, which could make it preferable in practical industrial production.


Sign in / Sign up

Export Citation Format

Share Document