scholarly journals The Alternative Method of Conditioning Industrial Wastewater Containing Heavy Metals Based on the Hydrothermodynamic Cavitation Technology

Author(s):  
Olga G. Dubrovskaya ◽  
Vladimir A. Kulagin ◽  
Yao Limin

This article provides the results of studies of modifying the physicochemical properties of industrial wastewater when treated in a cavitation reactor. The authors performed an analysis of physicochemical changes in the makeup of industrial effluent and defined the efficiency of reducing the content of heavy metal ions under various modes of hydrothermodynamic action. The article also proposes the methods of mathematical modelling for determining the optimal parameters of cavitation treatment of wastewater and reveals the advantages of upgrading the wastewater process equipment with the inclusion of a unit of SC-reactors

2018 ◽  
Vol 6 (04) ◽  
pp. 43-47
Author(s):  
Ajay Singh ◽  
Gurmeet Singh ◽  
Asheesh Kumar Gupta

Nanotechnology has given the opportunity to the researcher for developing new nano-composites in all field including, pharmaceuticals, agriculture, electronics and other fields. In this study agriculture waste material like bagasse dust has been combined with polyaniline to prepare new Nano composites. So formed Nano composite was characterised by using XRD, FTIR and SEM. SEM confirmed the Nanocomposite formation with size in the range of 100-130 nm. Such nanocomposites were used in the removal of dyes and heavy metals from industrial effluent. About 80-99% heavy metals could be removed through adsorption successfully.


2021 ◽  
Vol 15 (3) ◽  
pp. 307-317
Author(s):  
Ntung Nseabasi-Maina ◽  
Gideon Chijoke Okpokwasili ◽  
Obioma Agwa

The incidence of chemical stressors in industrial waste effluents has culminated in the re-engineering the genetic and metabolic characteristic of resident microbiota. Microbial adaptability enables them to tolerate these stressors however, propelling the phenomena of acquisition of heavy metal resistance which may also incite resistance to antibiotics. Waste water from industrial establishments may travel from site into surrounding communities via canals and waterways thus, disseminating these stressors as well as resistance in the environment. This study seeks to investigate the physicochemical and heavy metal composition of industrial effluent and its tolerance in resilient bacteria from the study area. Physiochemical analyses revealed pH level which ranged between (5.8-10.87), BOD (6.612-16.01 mg/l), TDS (937.226-2173.49 mg/l), Sulphates (658.72- 1342.28 mg/l), Nitrates (11.46-70.16 mg/l), Phosphate (3.03-8.43 mg/l) exceeded the NESRA limits; Cu (0.024-4.521 mg/l) Cd (0.002-6.41 mg/l), Pb (0.001-8.151mg/l), Zn (0.511-6.092 mg/l). All the isolates showed marked tolerance to Cu, Cr, Pb, Cd and Zn at concentrations between 200 and 500µg/ml, except Alkanindiges sp. 5-0-9 and Bacillus altitudinis which were not susceptible to all the heavy metals at all concentrations. This study revealed the incidence of heavy metal resistance among bacterial isolates from industrial wastewater, the incidence of which could give rise to co-occurrence with antibiotic resistance thus, aggravating a public health concern.


Author(s):  
Olga G. Dubrovskaya ◽  
Vladimir A. Kulagin

The results of studies on the conditioning systems of industrial wastewater containing heavy metal ions are presented. An analysis of the physicochemical modifications of the component composition of the model runoff has been carried out and the effectiveness of reducing the content of heavy metal ions under various hydrothermodynamic modes has been determined. Methods for mathematical modeling of determining the modes of optimal cavitation treatment of runoff are proposed, the advantages of upgrading cleaning equipment with the inclusion of SC reactors are identified


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 235
Author(s):  
Agata Marecka-Migacz ◽  
Piotr Tomasz Mitkowski ◽  
Arkadiusz Nędzarek ◽  
Jacek Różański ◽  
Waldemar Szaferski

The separation efficiencies of aqueous solutions containing nitric salts of Zn, Cu, Fe or Pb at various pH in process of nanofiltration have been investigated experimentally. These results were used to obtain the total volume membrane charge densities, through mathematical modelling based on the Donnan–Steric partitioning Model. The experimentally obtained retention values of individual heavy metal ions varied between 36% (Zn2+ at pH = 2), 57% (Pb2+ at pH = 2), 80% (Fe3+ at pH = 9), and up to 97% (Cu2+ at pH = 9). The mathematical modelling allowed for fitting the total volume membrane charge density (Xd), which yielded values ranging from −451.90 to +900.16 mol/m3 for different non-symmetric ions. This study presents the application of nanofiltration (NF) modelling, including a consideration of each ion present in the NF system—even those originating from solutions used to adjust the pH values of the feed.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2018 ◽  
Vol 70 ◽  
pp. 11-23 ◽  
Author(s):  
Oleg Marenkov ◽  
Mykola V. Prychepa ◽  
Julia Kovalchuk

In the experiment with marbled crayfishProcambarusvirginalis(Lyko, 2017), chronic effects of various concentrations of heavy metal ions on the physiological state and enzyme activity were investigated. The obtained results showed that among the investigated heavy metals nickel ions influenced the weight indexes and mortality of crustaceans the most negatively. According to the results of the research, significant changes were noted in the individual biochemical parameters of marbled crayfish under the influence of manganese, lead and nickel ions. The most significant changes in the activity of lactate dehydrogenase were detected in muscle tissues affected by manganese and nickel ions. A significant decrease in the activity of succinate dehydrogenase in muscle of marbled crayfish was determined after the action of heavy metal ions. Investigation of changes in the activity of alkaline phosphatase under the influence of the ions of manganese, lead and nickel has its own characteristics, which indicates certain violations in the tissues of cell membranes. Changes in the activity of enzymes were also reflected in the overall protein content. Changes in these parameters may indicate a rapid biochemical response of crustaceans to the toxic effects of heavy metals.


2020 ◽  
pp. 1-9
Author(s):  
O. I. Achieche ◽  
O. O. Njoku ◽  
C. M. Duru ◽  
M. O. Nwachukwu

The negative impact of gas flaring on the environment cannot be overemphasised. This study assessed the effect of gas flaring on the physicochemical properties and heavy metal contents in soils of Ebocha gas flaring site in Rivers State. It involved the assessment of various distances from gas flaring point to 200 meters away (50 m, 100 m, 150 m, and 200 m) which represents the extent of gas flared pollution on soils to determine the physicochemical properties and heavy metal load. The gas flaring significantly decreased soil organic carbon and calcium content when compared with non-gas flaring polluted soils. Soil acidity increased, soil exchangeable ions decreased. N, P and K were altered in gas flared soils when compared to the controls. There were detrimental effects on soils physicochemical properties. Heavy metals observed were Cd (Cadmium), Ni (Nickel), As (Arsenic), Cr (Chromium), while Pb (Lead) was not detected. The concentration of heavy metals in gas flared soils decreases down soil depth from 0-15 cm to 45-60 cm respectively. The gas flaring extremely caused the acidic nature of gas flared soils. Coefficient of variation (CV) in percentage shows significant increase in acidic nature of the gas flared soils when compared with the control soils.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Sign in / Sign up

Export Citation Format

Share Document