scholarly journals Scalability analysis of selected structures of a reconfigurable manufacturing system taking into account a reduction in machine tools reliability

2021 ◽  
Vol 23 (2) ◽  
pp. 242-252
Author(s):  
Arkadiusz Gola ◽  
Zbigniew Pastuszak ◽  
Marcin Relich ◽  
Łukasz Sobaszek ◽  
Eryk Szwarc

Scalability is a key feature of reconfigurable manufacturing systems (RMS). It enables fast and cost-effective adaptation of their structure to sudden changes in product demand. In principle, it allows to adjust a system's production capacity to match the existing orders. However, scalability can also act as a "safety buffer" to ensure a required minimum level of productivity, even when there is a decline in the reliability of the machines that are part of the machine tool subsystem of a manufacturing system. In this article, we analysed selected functional structures of an RMS under design to see whether they could be expanded should the reliability of machine tools decrease making it impossible to achieve a defined level of productivity. We also investigated the impact of the expansion of the system on its reliability. To identify bottlenecks in the manufacturing process, we ran computer simulations in which the course of the manufacturing process was modelled and simulated for 2-, 3-, 4- and 5-stage RMS structures using Tecnomatix Plant Simulation software.

2011 ◽  
Vol 110-116 ◽  
pp. 1442-1446 ◽  
Author(s):  
Dodla Srikanth ◽  
M. S. Kulkarni

Reconfigurable Manufacturing Systems (RMS) have the potential to emerge as a cost effective solution that will help manufacturing organizations to stay competitive in an environment where product mix changes frequently and product life cycles are getting shorter. Reconfigurable Manufacturing Systems can achieve this as they are designed for quick changes in its configuration, as well as software and hardware components. This not only helps in accommodating production capacity but also production of new variety of products and introduction of new product within part family. However, the configurations have a significant impact on the productivity and reliability of the machines and the manufacturing system. In the present paper, the main objective is to present a framework consisting of Maintenance plan to be followed for the reconfigured machine, Reliability of the reconfigured machine, Quality of the product obtained. This framework can form as the basic idea and a link between maintenance, reliability and quality issues.


2014 ◽  
Vol 556-562 ◽  
pp. 6034-6037
Author(s):  
Dong Man Yu ◽  
Zhi Hua Gao ◽  
Xiao Jing Li ◽  
Di Wang

Reconfigurable manufacturing system is essential for sustainable change, rapid response ability important characteristics, research, development and application of manufacturing system. The main architecture and major characteristics of reconfigurable manufacturing systems is explored. Normally, the quality of RMS can be evaluated by several factors. Firstly, the gross cost of production and reconstruction should be less. Secondly, The time of design and manufacture (ascent time) should be shorter. Thirdly, the utilization ratio of existed resource should reach to the utmost. Finally, the cargo stream planning in common space should keep in optimal condition. At last, The author give an example to shown the RMS, the hydraulic integrated package for a gearshift device in automobile, are mentioned to compare and analyze.


Author(s):  
Abdul Salam Khan ◽  
Khawer Naeem ◽  
Raza Ullah Khan

An abrupt change requires a robust and flexible response from a manufacturing system. Dedicated Manufacturing System (DMS) has been a long practiced taxonomy for mass production and minimum varieties. In contrast, Flexible Manufacturing System (FMS) has been introduced for responding to quantity as well as variety issues. This study considers both production taxonomics by using a multi objective model of cost and time. An Integer Linear Programming (ILP) formulation is presented and subsequently validated. The analysis procedure is administered in two phases. In the first phase, comparison of production cost and process time in DMS and FMS is presented. The model is implemented by using an exact solution approach and results show that FMS is a viable option, compared to DMS, according to the criteria of cost, time, and productivity. In the second phase, sensitivity analysis is performed by using several FMS (n) and the impact of cells selection on the performance of system is studied. It is concluded that n=1 (single cell-based FMS) is more relevant for cost minimization; however, n = 6 is a suitable candidate for producing more quantity in given time horizon (process time minimization). Lastly, key findings are reported, and future research avenues are provided.


Author(s):  
Emre Bilgin Sarı ◽  
Sabri Erdem

Seru production system is a flexible, cost-effective, workforce competence-oriented manufacturing management system that provides the opportunity to respond quickly to customer demand. As in parallel to technology and physical improvements, customer demands are also effective for development of production systems. The impact of change in demand has been seen on changeover from job shop to mass production, flexible, and lean manufacturing systems. Seru production system is more appropriate for targeting work both cost-effectively like mass production and maximum diversification like job shop production. This chapter clarifies the Seru production system and explain its use and benefits in the clothing industry. In the application, a shirt production is illustrated according to the principles of mass production, lean production, and Seru production. Thus, different types of production systems have been benchmarked. There will be potential study areas for proving the efficiency of Seru soon.


Author(s):  
Farayi Musharavati ◽  
Napsiah Ismail ◽  
Abdel Majid S. Hamouda ◽  
Abdul Rahman Ramli

Proses perancangan pembuatan adalah berkaitan dengan keputusan berdasarkan pemilihan tatarajah yang optimum daripada modul proses untuk pemprosesan bahagian kerja. Untuk pembentukan semula barisan pembuatan bagi pelbagai bahagian kerja, keputusannya dipengaruhi jenis proses yang sedia ada, hubungkait jujukan pemprosesan dan juga aturan pemprosesan bahagian kerja tersebut. Keputusan proses perancangan pembuatan mungkin bercanggah, oleh itu tugasan membuat keputusan perlu mengambil kira cara setemu. Kertas kerja ini membentangkan teknik optima untuk masalah berkaitan proses perancangan pembuatan dalam rangka kerja pembuatan pembentukan semula. Proses MPP dimodelkan sebagai masalah pengoptimuman dan keadah penyelesaian yang diperolehi daripada teknik metahuristik dikenali sebagai simulasi penyepuhlindapan. Fungsi analisis bagi memodel proses perancangan pembuatan adalah berdasarkan pengetahuan mengenai proses dan sistem pembuatan serta kekangan proses. Applikasi bagi pendekatan ini ditunjukkan melalui barisan pembuatan pembentukan semula berbilang tahap siri selari. Keputusan menunjukkan penambahbaik yang signifikasi diperolehi dalam penyelesaian untuk masalah jenis ini dengan menggunakan simulasi penyepuhlindapan. Tambahan pula, teknik metaheuristik berkebolehan untuk mengenal pasti kaedah proses pembuatan yang optima berdasarkan senario pengeluaran yang diberi. Kata kunci: Metaheuristik, simulasi penyepuhlindapan, proses perancangan pembuatan, sistem pembuatan pembentukan semula, senario pembuatan Manufacturing process planning (MPP) is concerned with decisions regarding selection of an optimal configuration for processing parts. For multiparts reconfigurable manufacturing lines, such decisions are strongly influenced by the types of processes available, the relationships for sequencing the processes and the order of processing parts. Decisions may conflict, hence the decision making tasks must be carried out in a concurrent manner. This paper outlines an optimization solution technique for the MPP problem in reconfigurable manufacturing systems (RMSs). MPP is modelled in an optimization perspective and the solution methodology is provided through a metaheuristic technique known as simulated annealing. Analytical functions for modelling MPP are based on knowledge of processes available to the manufacturing system as well as processing constraints. Application of this approach is illustrated through a multistage parallel–serial reconfigurable manufacturing line. The results show that significant improvements to the solution of this type of problem can be gained through the use of simulated annealing. Moreover, the metaheuristic technique is able to identify an optimal manufacturing process plan for a given production scenario. Key words: Metaheuristics, simulated annealing, manufacturing process planning, reconfigurable manufacturing systems, production scenarios


2019 ◽  
Vol 8 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Ashutosh Singh ◽  
Mohammad Asjad ◽  
Piyush Gupta ◽  
Jahangir Quamar

The traditional structure of machines (such as lathe, milling, shaper, slotter, drilling and planer) has become questionable because of the modular concepts (such as modularity, scalability, convertibility, mobility and flexibility) and reconfiguration becomes a promising approach towards modular manufacturing machines, in which manufacturing techniques are independent of changes. In this area, reconfigurable machine tool (RMT) forms a new class of modular machines in current manufacturing scenario where the manufacturing industry put a strong pressure on good quality and price reduction. The capabilities of the machines tool and manufacturing systems in reconfigurable manufacturing system (RMS) change with each reconfiguration (both software and hardware modules). In this case, an approach is presented for reconfiguration of horizontal shaper machine for developing the modular shaper cum slotter machine in a manufacturing system by adding some auxiliary (like Scott Russel mechanism) and some basic modules and the reconfiguration features of traditional shaper and slotter machine are also discussed. The proposed approach is illustrated with a figure, which has been designed on 3-D design tool (solid-works software platform). It is expected that, this work will help designers and practising engineers by making them aware of the reconfiguration mechanisms on traditional shaper machine, which have become a necessity for the very survival of manufacturing by lowering the operational costs.


Author(s):  
A M Farid

In recent years, many design approaches have been developed for automated manufacturing systems in the fields of reconfigurable manufacturing systems (RMSs), holonic manufacturing systems (HMSs), and multiagent systems (MASs). One of the principle reasons for these developments has been to enhance the reconfigurability of a manufacturing system, allowing it to adapt readily to changes over time. However, to date reconfigurability assessment has been limited. Hence the efficacy of these design approaches remains inconclusive. This paper is the second of two in this issue to address reconfigurability measurement. Specifically, ‘reconfiguration ease’ has often been qualitatively argued to depend on the system's modularity. For this purpose, this paper develops modularity measures in a three-step approach. Firstly, the nature of typical manufacturing system interfaces is discussed. Next, the qualitative understanding underlying existing modularity measures is distilled. Finally, these understandings are synthesized for a manufacturing system context. This approach forms the second of two pillars that together lay the foundation for an integrated reconfigurability measurement process described elsewhere.


Author(s):  
Valerie Maier-Speredelozzi ◽  
Theodor Freiheit ◽  
S. Jack Hu

Conversions between different products manufactured on the same system often require time-consuming shut-downs and thus, incur productivity losses. Producing multiple products on the same line complicates system productivity analysis because production rates, failure rates, and repair rates vary between different part types. Certain manufacturing system configurations have advantages when convertibility is considered. Ideally, manufacturing lines that produce a mix of products or undergo a product rollover would not see any loss in production relative to lines that continuously produce a single product throughout the system lifetime. This paper investigates the interactions between convertibility and productivity for different manufacturing system configurations, using analytical methods. The methods presented in this paper can be applied to assembly or machining stations in dedicated, flexible, or reconfigurable manufacturing systems. When designing such systems, it is important to recognize that more convertible systems are more productive over the long-term, as product designs change.


Author(s):  
Yifan Dong ◽  
Tangbin Xia ◽  
Lei Xiao ◽  
Ershun Pan ◽  
Lifeng Xi

Abstract Real-time condition acquisition and accurate time-to-failure (TTF) prognostic of machines are both crucial in the condition based maintenance (CBM) scheme for a manufacturing system. Most of previous researches considered the degradation process as a population-specific reliability characteristics and ignored the hidden differences among the degradation process of individual machines. Moreover, existing maintenance scheme are mostly focus on the manufacturing system with fixed structure. These proposed maintenance scheme could not be applied for the reconfigurable manufacturing system, which is quite adjustable to the various product order and customer demands in the current market. In this paper, we develop a systematic predictive maintenance (PM) framework including real-time prognostic and dynamic maintenance window (DMW) scheme for reconfigurable manufacturing systems to fill these gaps. We propose a real-time Bayesian updating prognostic model using sensor-based condition information for computing each individual machine’s TTFs, and a dynamic maintenance window scheme for the maintenance work scheduling of a reconfigurable manufacturing system. This enables the real-time prognosis updating, the rapid decision making for reconfigurable manufacturing systems, and the notable maintenance cost reduction.


2020 ◽  
Vol 10 (14) ◽  
pp. 4807
Author(s):  
Sumin Han ◽  
Tai-Woo Chang ◽  
Yoo Suk Hong ◽  
Jinwoo Park

With the recent diversification of demands, manufacturing systems that can respond to multiple types of goods have become more important. In this circumstance, reconfigurable manufacturing systems (RMSs) that can provide flexible manufacturing with limited machine tools through reconfiguration have gained a lot of attention. As an RMS supports flexibility through layout reconfiguration, reconfiguration decision-making is very important and difficult. The development of IoT technology has made it possible to collect hidden information inside systems. This study focused on the reconfiguration decision-making system with the data acquisition system based on IoT technology. The decision-making system detected a reconfiguration situation and built a reconfiguration plan using the data collected by IoT sensors. The performance of the algorithm proposed in this study was verified in a simulation experiment. It was found that the algorithm had a stable performance under various reconfigurable situations. It is expected that the proposed system will help to improve the performance of RMS.


Sign in / Sign up

Export Citation Format

Share Document