scholarly journals Experimental and numerical study of an internal combustion engine coolant flow distribution

2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Ana Marta Souza ◽  
Antônio César Valadares de Oliveira ◽  
Enrico Temporim Ribeiro ◽  
Francisco Souza ◽  
Marcelo Colombo Chiari

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2362
Author(s):  
Savvas Savvakis ◽  
Dimitrios Mertzis ◽  
Elias Nassiopoulos ◽  
Zissis Samaras

The current paper investigates two particular features of a novel rotary split engine. This internal combustion engine incorporates a number of positive advantages in comparison to conventional reciprocating piston engines. As a split engine, it is characterized by a significant difference between the expansion and compression ratios, the former being higher. The processes are decoupled and take place simultaneously, in different chambers and on the different sides of the rotating pistons. Initially, a brief description of the engine’s structure and operating principle is provided. Next, the configuration of the compression chamber and the sealing system are examined. The numerical study is conducted using CFD simulation models, with the relevant assumptions and boundary conditions. Two parameters of the compression chamber were studied, the intake port design (initial and optimized) and the sealing system size (short and long). The best option was found to be the combination of the optimized intake port design with the short seal, in order to keep the compression chamber as close as possible to the engine shaft. A more detailed study of the sealing system included different labyrinth geometries. It was found that the stepped labyrinth achieves the highest sealing efficiency.


2018 ◽  
Author(s):  
Deborah Domingos da Rocha ◽  
Fabio de Castro Radicchi ◽  
Paulo César de Ferreira Gomes ◽  
Marcello Brunocilla ◽  
Ramon Molina Valle

2021 ◽  
Vol 1 (1) ◽  
pp. 51-56
Author(s):  
N.A. Ivanov ◽  
◽  
D.V. Otmakhov ◽  
S.P. Zakharychev ◽  
O.V. Kazannikov ◽  
...  

The main topic of the article is the development of an effective design for a pre-starting heating system for an internal combustion engine for conditions of limited power supply. The work to im-prove the design of light wheeled all-terrain vehicles on low pressure pneumatics is done at Pacific National University. Prototypes of light wheeled off-road vehicles are used mainly in agriculture and for forestry production. There are prerequisites for their use in oil and gas fields in the Far North conditions. This vehicle is operated all year round, in the absence of power supply, it is stored in the open air, so the problem of starting a cold engine is quite important, and the topic of creating a design for a pre-starting heating system for an internal combustion engine under conditions of limited or com-plete absence of power supply is relevant. The purpose of the work is to develop and study the efficiency of the pre-starting heating system for an internal combustion engine with liquid cooling for conditions of limited power supply. Our own design of the cooling system with a pre-starting heating function based on a gasoline burner was developed. To assess the efficiency of the engine warm-up process, the circuit was as-sembled on a light wheeled all-terrain vehicle. The experimental studies were carried out to deter-mine the regularity of changes in the temperature of the engine coolant during pre-starting heating at different ambient temperatures. The results of the experiment indicate the high efficiency of the developed system based on a gasoline burner. The average heating rate of the engine coolant during the warm-up process was 2.1 - 2.8 оС per minute, which indicates an intensive pace of pre-starting heating.


The issues of cooling control automation for an internal combustion engine (ICE) of cars and trucks are considered. An algorithm for controlling the number of revolutions of the electric motors for the liquid pump and the radiator fan, depending on the temperature of the internal combustion engine coolant is proposed. This algorithm is stir up by the Arduino MEGA 2500 microcontroller in conjunction with the motor driver. The automatic control system for the thermal state of the internal combustion engine will reduce fuel consumption, wear of the cylinderpiston group, as well as the emission of harmful substances into the atmosphere.


Drones ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 23
Author(s):  
Galia Faingold ◽  
Leonid Tartakovsky ◽  
Steven Frankel

In the reported study, various aspects of dimethyl ether/hydrogen combustion in a Reactivity Controlled Compression Ignition (RCCI) engine are numerically evaluated using Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). Early direct injection and mixture propagation were also explored, along with peculiaritis of dimethyl ether combustion modeling. The numerical models are validated using available experimental results of a partially premixed dimethyl ether jet flames and an optically accessible internal combustion engine with direct hydrogen injection. LES showed more predictive results in modeling both combustion and mixture propagation. The same models were applied to a full engine cycle of an RCCI engine with stratified reactivity, to gain phenomenological insight into the physical processes involved in stratified reactivity combustion. We showed that 3D and turbulence considerations had a great impact on simulation results, and the LES was able to capture the pressure oscillations typical for this type of combustion.


Sign in / Sign up

Export Citation Format

Share Document