scholarly journals Effect of Partial Replacement of Cement in Self-Compacting Concrete by Fly Ash and Metakaolin

Author(s):  
Bharath E ◽  
Prakash P ◽  
Srishaila J M ◽  
Prema Kumar W P ◽  
2018 ◽  
Vol 27 (3) ◽  
pp. 328-337
Author(s):  
Dorota Małaszkiewicz ◽  
Daniel Jastrzębski

The article presents the results of research assessing the possibility of making LWSCC from the locally produced sintered fly ash aggregate CERTYD. Two methods of preliminary LWA preparation were applied: pre-soaking with water and coating with a film of cement paste. The following properties of fresh LWSCC were evaluated: slump-flow, time T500 and passing ability using L-Box. Partial replacement of natural sand by fine LW sand (0/0.5 mm) improved filling and passing abilities of fresh concrete, reduced slightly the bulk density, but it resulted in compressive strength loss by 12-18%. In terms of both fresh and hardened concrete properties it is more favorable to use only fine LW sand as natural sand replacement. Considering fresh concrete properties paste impregnation of LW aggregate is more efficient than saturation with water.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 488
Author(s):  
Sylvia Kelechi ◽  
Musa Adamu ◽  
Abubakar Mohammed ◽  
Yasser Ibrahim ◽  
Ifeyinwa Obianyo

Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

Wood and fly ash were observed to have significant qualities that could improved the strength of self compacting concrete, the material were applied to increase the compressive strength of concrete strength, this material could be the demanding material for partial  replacement for cement, the study observed the behaviour of the material from experts that applied these material through experimental investigation, but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of this materials in compressive strength, this was to determine the  significant effect on the addictive applied as partial replacement for cement, lots of experts has done works on fly ash through experiment concept, but the application of predictive concept has not be carried out, the  adoption of this concept has expressed other parameters that contributed to the efficiency of  wood and fly ash as partial replacement for cement on self compacting concrete. The study adopting modeling and simulation observed 10 and 20% by weight of cement as it is reflected on its performance in the simulation, from the simulation wood recorded 10% as it was observed from the growth rate of this self compacting concrete reflected from the trend, the simulation for model validation were compared with the works of the studies carried out [20]. And both values developed best fits correlation


Author(s):  
Aishwarya Dupaki

Abstract: This paper gives a review on self compacting concrete(SCC) to be made as partial replacing of cement by fly ash and metakaolin and partial replacing of fine aggregate with copper slag. Day by day production of concrete is increasing due to requirement of concrete is increasing with sufficient mechanical and durable properties in construction industry. Self compacting concrete is the special concrete which has ability of passing and filling of every corner of the congested area. So many researches are going on to increase mechanical and durable properties of SCC. Due to shortage of natural aggregates, researches are going on to use by-products or waste material as fine aggregate. Copper slag is a by-product produced during the process of production of copper. To achieve good mechanical and durable properties of self-compacting concrete cementitious material places an important role. Metakaolin and fly ash are used as the partial replacement of cement. In this paper an overview on the literature on mechanical behaviour of self-compacting concrete with partial replacement of cement by fly ash and metakaolin and partial replacement of fine aggregate with copper slag. Keywords: self compacting concrete, copper slag, fly ash, metakaolin, mechanical properties, durability


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

This paper monitors the growth rate of tensile strength under partial replacement of locally sourced materials, the study monitor the behaviour of tensile between seven and  twenty eight days of optimum curing age,  modeling and simulation were applied in the study, whereby parameters that generate the attained tensile strength from self compacting concrete were monitored considering various factors such as variation of compaction and water cement ratio, the reaction of these parameters were examined in the study through the simulation, the reflection of these parameters influence where observed in all the trend, the study examined the level of significances of tensile on concrete structure, therefore try to evaluate  various reflection effect from permeability and other parameters that were not considered in  experimental process, these are  developed from  self compacting concrete partially replace cement with fly ash and wood.  Tensile strength is an important property of concrete due its level of vulnerability to tensile cracking base on different kind of applied loading itself. The influence of permeability as a physical property has definitely affect the durability of concrete, these  where observed on the its reflection on tensile strength in all the trend, the rate of permeability effect on tensile were monitored to reflect its reaction through microstructural perspective influence from porosity, pore size, connectivity including its rates of bonding, these correlation includes  air content and capillarity, there rate of permeability coefficient on its reduction are determined by the decrease in porosity and void ratios from concrete compaction rate, it is  reflected on  its variation  of tensile strength in self compacting concrete, the rate of permeability reducing at constant rates determined the tensile strength through it microstructural  setting on the self compacting concrete, these condition were applied on the simulation to generates the predictive values compared with experimental values by an expert [22], while an improvement were made on it study, these include monitoring of concrete permeability and void ratios effect on tensile, the behaviour of porosity under the influence of permeability and variation concrete void were examined from the permeability influence on tensile strength.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 566
Author(s):  
Sushree Sangita Rautray ◽  
Manas Ranjan Das

Self-Compacting Concrete (SCC) is becoming a popular choice in concrete industries due to its filling ability in congested reinforcement and its auto compacting nature. In the present work, an attempt has been made to investigate the properties of fresh and hardened concrete made by partial replacement of cement by fly ash and ground granulated blast furnace slag (ggbs) in different percentages. The essential properties of freshly prepared concrete like flowability, passing ability, filling ability are determined by slump flow test, slump flow T50cm, V-funnel, J-ring and L-box test. The values are found to satisfy EFNARC guidelines. Tests have also been conducted to assess and analyze the properties of hardened concrete such as compressive strength, split tensile strength and flexural strength. Thus an attempt has been made to develop a formulation of an economically feasible and environment friendly self-compacting concrete.   


2019 ◽  
Vol 8 (3) ◽  
pp. 2844-2848

The economy of a developing country depends to a great extent on the construction industry. Developing countries like India are investing heavily in infrastructure development. The excessive exploitation of natural resources for construction threatens the sustainability of aggregates and poses a number of serious problems. At the same time, the disposal of fly ash and stone residues in landfills cause several environmental crises and pollute the environment. This article deals with a study on the structural behavior of the partial replacement of fine natural aggregates by 0 -40% crystal stones in order to obtain the flow properties of fly-ash-based self-compacting concrete (SCC) by using super plasticizers. Many tests have been done to test the feasibility of using crystal stones in M30 grade SCC. On the basis of the results obtained, the optimum percentage of fine aggregates with crystal stone was calculated at 30% and it was concluded that the increasing percentage of crystal stone replacement by fine aggregates did not affect its workability. The structural performance of simply supported RCC beams of size 150 × 200 × 1500 mm made from SCC with crystalline stone was tested


2020 ◽  
Vol 52 (3) ◽  
pp. 307-327
Author(s):  
Aleksandar Savic ◽  
Milica Vlahovic ◽  
Sanja Martinovic ◽  
Natasa Djordjevic ◽  
Gordana Broceta ◽  
...  

This study analyzes the feasibility of valorizing industrial by-product, fly ash from a thermal power plant as a partial replacement of mineral filler-limestone for the production of self-compacting concrete (SCC). Three types of SCC mixtures with different portions of fly ash and the reference mixture with limestone were designed. The synthesized SCCs in the fresh state were examined for density, entrained air content, flowability (Slump flow, Slump flow time (t500), V-funnel time (tv)), passing ability (L-box), and segregation resistance, while hardened state testing included: density, compressive and flexural strength, static modulus of elasticity, water permeability, resistance against freezing in the presence of de-icing salt, and SEM analysis. Taking into account the obtained results it can be concluded that the addition of fly ash has a positive impact on the concrete properties and that the optimal content of fly ash is 20 % with respect to the total filler mass.


Sign in / Sign up

Export Citation Format

Share Document