Predicting Tensile Strength Growth From Self Compacting Concrete Partially Replaced Cement with Wood and Fly Ash

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

This paper monitors the growth rate of tensile strength under partial replacement of locally sourced materials, the study monitor the behaviour of tensile between seven and  twenty eight days of optimum curing age,  modeling and simulation were applied in the study, whereby parameters that generate the attained tensile strength from self compacting concrete were monitored considering various factors such as variation of compaction and water cement ratio, the reaction of these parameters were examined in the study through the simulation, the reflection of these parameters influence where observed in all the trend, the study examined the level of significances of tensile on concrete structure, therefore try to evaluate  various reflection effect from permeability and other parameters that were not considered in  experimental process, these are  developed from  self compacting concrete partially replace cement with fly ash and wood.  Tensile strength is an important property of concrete due its level of vulnerability to tensile cracking base on different kind of applied loading itself. The influence of permeability as a physical property has definitely affect the durability of concrete, these  where observed on the its reflection on tensile strength in all the trend, the rate of permeability effect on tensile were monitored to reflect its reaction through microstructural perspective influence from porosity, pore size, connectivity including its rates of bonding, these correlation includes  air content and capillarity, there rate of permeability coefficient on its reduction are determined by the decrease in porosity and void ratios from concrete compaction rate, it is  reflected on  its variation  of tensile strength in self compacting concrete, the rate of permeability reducing at constant rates determined the tensile strength through it microstructural  setting on the self compacting concrete, these condition were applied on the simulation to generates the predictive values compared with experimental values by an expert [22], while an improvement were made on it study, these include monitoring of concrete permeability and void ratios effect on tensile, the behaviour of porosity under the influence of permeability and variation concrete void were examined from the permeability influence on tensile strength.

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

Flexural strength was monitor and predicted on the application improving concrete strength with wood and fly as partial replacement for cement. The study observed the pressure from the constituent of these locally sourced material that has been observed from the study to influence the flexural strength through the effect from this locally sourced addictives, the study monitors concrete porosity on heterogeneity as it reflect on the flexural strength of self compacting concrete, other condition considered was the compaction and placement of concrete, these effects were monitored at  constant water cement ratio from design mix, the behaviour from this effects on the concrete observed the rate of flexural growth under the influences of these stated conditions, the simulation expressed the reactions of these effects through these parameters monitored to influence the system, numerical simulations were also applied to the optimum curing age of twenty eight days, while analytical simulation was also applied, this concept are the conventional seven days interval that concrete curing were observed, these are improvement done on the study carried out by SachinPrabhu et al 2018, these locally sourced material were experimentally applied, the simulation predictive values is at the interval of seven days of curing, which was also simulated. the predictive values were compared with the experimental values of SachinPrabhu et al 2018, and both values developed best fits correlations, the study is imperative because the system considered  the parameters used on experimental and observed other influential variables that were not examined, these were not observed in the experimental procedure, experts in concrete engineering will definitely find these concept a better option in monitoring flexural strength   of self compacting concrete in general.


Reactive powder concrete (RPC) is the ultra-high strength concrete made by cementitious materials like silica fumes, cement etc. The coarse aggregates are completely replaced by quartz sand. Steel fibers which are optional are added to enhance the ductility. Market survey has shown that micro-silica is not so easily available and relatively costly. Therefore an attempt is made to experimentally investigate the reduction of micro-silica content by replacing it with fly-ash and mechanical properties of modified RPC are investigated. Experimental investigations show that compressive strength decreases gradually with addition of the fly ash. With 10 per cent replacement of micro silica, the flexural and tensile strength showed 40 and 46 per cent increase in the respective strength, though the decrease in the compressive strength was observed to be about 20 per cent. For further percentage of replacement, there was substantial drop in compressive, flexural as well as tensile strength. The experimental results thereby indicates that utilisation of fly-ash as a partial replacement to micro silica up to 10 per cent in RPC is feasible and shows quite acceptable mechanical performance with the advantage of utilisation of fly-ash in replacement of micro-silica.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6158
Author(s):  
Cătălina Mihaela Grădinaru ◽  
Adrian Alexandru Șerbănoiu ◽  
Radu Muntean ◽  
Bogdan Vasile Șerbănoiu

The effects of the fly ash and of the sunflower stalks and corn cobs within a cement-matrix composite were studied under the aspects of density, compressive strength, splitting tensile strength, elasticity modulus, and resistance to repeated freeze-thaw cycles. In the research were developed 20 recipes of cement-based composite, including the reference composite. Fly ash was used as partial cement replacement (10, 20 and 30% by volume), and the vegetal aggregates made by corn cobs and sunflower stalks as partial replacement of the mineral aggregates (25 and 50% by volume). The study results revealed that a lightweight composite can be obtained with 50% of vegetal aggregates, and the fly ash, no matter its percentage, enhanced the compressive strength and splitting tensile strength of the compositions with 50% of sunflower aggregates and the freeze-thaw resistance of all compositions with sunflower stalks.


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


Author(s):  
Nazrin Fathima Fazil M ◽  
C.J. Chitra

        Self-compacting concrete (SCC) refers to high strength concrete which will compact under its own weight and does not require external vibration. This paper gives a review on the journals to study the effect of metakaoiln in SCC. The metakaolin is used as a replacement of cement and it is obtained from natural Kaolin clay. Metakaolin helps to increase the compressive strength, spilt tensile strength, flexural strength and also the fresh properties. The use super plasticizer greatly improves pump-ability and the slump value. GLENIUM B233 is a new generation based super plasticizer which is based on modified polycarboxylic ether. The fresh properties such as pump ability and workability and the durability properties of super plasticizer in SCC with metakaolin are discussed. Keywords: Self-Compacting Concrete, Metakaolin, GLENIUM B233, Superplasticizer, Polycarboxylic Ether


2018 ◽  
Vol 27 (3) ◽  
pp. 328-337
Author(s):  
Dorota Małaszkiewicz ◽  
Daniel Jastrzębski

The article presents the results of research assessing the possibility of making LWSCC from the locally produced sintered fly ash aggregate CERTYD. Two methods of preliminary LWA preparation were applied: pre-soaking with water and coating with a film of cement paste. The following properties of fresh LWSCC were evaluated: slump-flow, time T500 and passing ability using L-Box. Partial replacement of natural sand by fine LW sand (0/0.5 mm) improved filling and passing abilities of fresh concrete, reduced slightly the bulk density, but it resulted in compressive strength loss by 12-18%. In terms of both fresh and hardened concrete properties it is more favorable to use only fine LW sand as natural sand replacement. Considering fresh concrete properties paste impregnation of LW aggregate is more efficient than saturation with water.


2019 ◽  
Vol 1 (2) ◽  
pp. 180-186
Author(s):  
Dilan Rantung ◽  
Steve W.M. Supit ◽  
Seska Nicolaas

This paper aims to investigate experimentally the influence of replacing cement with different fineness of fly ash based on flowability, passing ability, compressive strength, tensile strength (splitting). Concretes with 15% fly ash (passed a number 100 sieve) and fine fly ash (passed a number 200 sieve) as cement replacement were cast and tested at 7, 14, 28 days after water curing. A superplasticizer in the form of viscocrete 3115 N was constantly used for each concrete mixtures as much as 1% by weight of cement. The results show that the use of fly ash does not significantly increased the compressive strength and tensile strength of SCC mixtures. However, concrete with 15% fine fly ash its self and combined 7.5% fly ash with 7.5% fine fly ash show better flowability and passing ability when compared to concrete with cement only indicating the performance of using smaller particle sizes of fly ash could lead better properties of SCC that can be potentially used for building construction application.


Author(s):  
Khalid Bashir Mir

In this review study the usage of three different kinds of constructional materials was discussed in detail. The three materials comprised of Ground Granulated Blast Furnace Slag, fly and polypropylene fiber. Ground Granulated Blast Furnace Slag is basically the slag derived after the quenching process of iron slag produced during the processing of iron in iron industry. Fly ash is the waste generated from the coal processing industries and is mainly used in the road constructions works. Polypropylene fiber is a synthetic fiber that has very high tensile strength and flexural strength. This fiber is also known as synthetic fiber as it is mainly used in the synthetic industry. Depending upon the results of previous studies over the usage of these materials various conclusions has been drawn which are as follows. The results of studies related to the usage of Ground Granulated Blast Furnace Slag as partial replacement of cement concluded that the most optimum usage percentage of Ground Granulated Blast Furnace Slag as partial replacement of cement was found to be between 20 percent and 30 percent and beyond this limit the strength of concrete was decreasing. The past studies related to the usage of fly ash as partial replacement of cement shoed that the most optimum usage percentage of fly ash was found to be between 15 percent to 20 percent and beyond this percentage the strength parameters of concrete such as compressive strength, flexural strength and split tensile strength starts declining up to a greater extent. The studies related to the usage of polypropylene fiber showed that the usage of this fiber increases the compressive strength of soil and the most optimum results were found between 1.0 percent to 1.5 percent usages of polypropylene fiber. Above this percentage there will be negative effect on the strength aspects and the compressive strength starts declining.


2015 ◽  
Vol 776 ◽  
pp. 24-29 ◽  
Author(s):  
Ary Setyawan ◽  
D. Sarwono ◽  
M.S. Adnan

Slurry Seal is an impermeable non-structural thin layer that is used for pavement maintenance consisting of a cold laid mixture of asphalt emulsion with continuous graded fine aggregate, mineral filler, water and other added ingredients. Ordinary Portland Cement (OPC) as the main filler in the application of slurry seal. Due to the relatively high cement prices and the pollution control for the environment; it is required to maintain the quality of the slurry by using a combination of OPC and LCFA (Low Calcium Fly Ash). This research was conducted to determine the value of consistency, setting time and indirect tensile strength (ITS) of slurry seal containing LCFA. A consistency testing used to obtain optimum moisture content to produce the sample for the rest of the test. The results show that with the addition of 5% water for pre-wetting and subsequently 10% of water content, the mixture provide appropriate consistency as required by highways standard. The time settings also meet the requirements of highways standard between 15 to 720 minutes for all types of mixtures. The mixture with composition of 50% OPC and 50% LCFA is considered as an ideal mixture at the optimum density value of 1.769 g/cm3, porosity of 9.55% and the indirect tensile strength of 30.99 kPa. It could be concluded that fly ash can be used as OPC partial replacement and enhance the properties on slurry seal application.


Sign in / Sign up

Export Citation Format

Share Document