scholarly journals Effect of Stacking Sequence and Orientation on Tensile Response of Natural Fiber Reinforced Hybrid Composites: Fibrous - Glass/Hemp/Jute/ Epoxy Composite Plates

Author(s):  
Ch. Naresh ◽  
Y. Rajesh Kumar ◽  
K. Manikantesh ◽  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950099 ◽  
Author(s):  
AHMED ABDUL BASEER ◽  
D. V. RAVI SHANKAR ◽  
M. MANZOOR HUSSAIN

Fiber reinforced polymer (FRP) composites are appealing for use in structural building applications because of their high strength-to-weight and stiffness-to-weight proportions, corrosion resistance, lightweight, possibly high durability, along with free design characteristics. The aim of this research work was to develop high strength natural fiber-based composite plates for the possible application in the shear strengthening of the reinforced concrete structure. In the experimental modeling, the composites were fabricated using glass, flax and kenaf fibers in treated and untreated conditions. This paper studied and analyzed the interfacial and tensile properties of fiber reinforced hybrid composites such as flax/glass and kenaf/glass by using the simulation approach, i.e. Deep Neural Network (DNN) with weight optimization. For optimizing the weights in DNN, Oppositional based FireFly Optimization (OFFO) is proposed. All the optimal results exhibit in the way that the accomplished error values between the output of the experimental values and the predicted qualities are firmly equivalent to zero in the designed system.


2021 ◽  
Vol 56 (2) ◽  
pp. 591-604
Author(s):  
Aidy Ali ◽  
Kannan Rassiah ◽  
M.M.H Megat Ahmad

Natural fiber-reinforced composites are necessary to increase the use of polymer composite technology. This study investigates a specific type of bamboo species named Gigantochloa Scortechinii (Buluh Semantan), collected from the Bukit Larang Village in Melaka, Malaysia. Bamboo strips with average dimensions of 300 mm x 5 mm x 0.5 mm were weaved in plain-woven bamboo and divided into 2 to 6 laminate layers through 6 layers of E-glass epoxy subjected to the hand lay-up process to produce the hybrid composite. The hybrid composites were prepared in a stacking sequence of plain-woven bamboo and were characterized in their mechanical properties. The behaviors of the tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength improved in the 2-layer laminated hybrid sequences. Still, the opposite trend was observed for the hardness value with the 6-layer laminated mixed sequences. The morphology scanning electron microscopy (SEM) results supported the findings of the mechanical properties, which demonstrated the interaction between the EP and fibers with the selected stacking sequence. The works give sound basis decisions to engineers to apply the Bamboo laminated composites in construction materials and building decoration.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


Author(s):  
M. Dinesh ◽  
R. Asokan ◽  
S. Vignesh ◽  
Chitikena Phani Kumar ◽  
Rajulapati Ravichand

Over the years, application of composite materials has got wider. So there is a necessity for development of new materials to satisfy the environmental requirements. It is viable through the process of hybridization of natural fibers to synthetic fibers. This investigation is carried out to determine the tensile and flexural strength of hybrid composites with various fiber combinations and stacking sequence. Thus it is easy to identify the natural fiber hybrid combination with high mechanical properties under static and varying thermal load conditions. The various fiber materials are meticulously chosen and three conventional and six different hybrid laminates were fabricated with various stacking sequences of selected fibers using hand layup technique. The tensile and flexural properties are determined through mechanical testing and compared with conventional materials. The failure morphologies are captured and investigated with zoom optical cameras. On analyzing the results, it is observed that carbon-flax hybrid composites exhibit nearly equivalent specific strength at a reduced cost compared to the carbon/glass fiber hybrid composites and also the effect of the stacking sequence in mechanical properties is elucidated through this study. Varying thermal load analysis reveals that there is a considerable loss in mechanical properties due to thermal exposure.


2017 ◽  
Vol 52 (9) ◽  
pp. 1183-1191 ◽  
Author(s):  
Asim Shahzad ◽  
Sana Ullah Nasir

Empirical model for predicting fatigue damage behavior of composite materials developed recently has been applied to composite materials made of different fibers in various configurations: carbon and glass fiber noncrimp fabric reinforced epoxy composites, chopped strand mat glass fiber-reinforced polyester composites, randomly oriented nonwoven hemp fiber-reinforced polyester composites, and glass/hemp fiber-reinforced polyester hybrid composites. The fatigue properties were evaluated in tension–tension mode at stress ratio R = 0.1 and frequency of 1 Hz. The experimental fatigue data were used to determine the material parameters required for the model. It has been found that the model accurately predicts the degradation of fatigue life of composites with an increase in number of fatigue cycles. The scope of applicability of this model has thus been broadened by using the fatigue data of natural fiber and noncrimp fabric composites.


2021 ◽  
Vol 23 (06) ◽  
pp. 923-931
Author(s):  
Sami Hamid ◽  
◽  
Abhishek Thakur ◽  

Hybrid composites are made by combining natural and synthetic fibers with an effective matrix, which usually means they’ve received additional strengthening, such as epoxy, to create the additional material properties you can’t obtain on their own. To attain the desirable tensile modulus, compressive modulus, and so on, a fiber composite needs to be added to the FRP (Fiber Reinforced Polymer). Polymer matrix composites are light and cost-effective to manufacture, but they still friendly to the environment and have viable applications, which is why they are often used in various commercial applications. Unidirectional fibers and bidirectionally reinforced with epoxy (SikaDur is a composite medium) carbon fibers are two-way reinforced with unidirectional (use unidirectional) Before we developed test procedures for preparing the test specimens, the testing lab implemented the layup method according to ASTM standards. Ten separate stacking sequences were tested and four different intensity sequences were used in testing the compressive structures according to ASTM D15. The results of the study indicate that hybridization helps natural fiber-reinforced polymer composites to increase their mechanical properties We would use natural fibers rather than synthetic ones since the natural ones make comparable strength when hybridized with synthetic ones.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Sign in / Sign up

Export Citation Format

Share Document