INTERFACIAL AND TENSILE PROPERTIES OF HYBRID FRP COMPOSITES USING DNN STRUCTURE WITH OPTIMIZATION MODEL

2019 ◽  
Vol 27 (02) ◽  
pp. 1950099 ◽  
Author(s):  
AHMED ABDUL BASEER ◽  
D. V. RAVI SHANKAR ◽  
M. MANZOOR HUSSAIN

Fiber reinforced polymer (FRP) composites are appealing for use in structural building applications because of their high strength-to-weight and stiffness-to-weight proportions, corrosion resistance, lightweight, possibly high durability, along with free design characteristics. The aim of this research work was to develop high strength natural fiber-based composite plates for the possible application in the shear strengthening of the reinforced concrete structure. In the experimental modeling, the composites were fabricated using glass, flax and kenaf fibers in treated and untreated conditions. This paper studied and analyzed the interfacial and tensile properties of fiber reinforced hybrid composites such as flax/glass and kenaf/glass by using the simulation approach, i.e. Deep Neural Network (DNN) with weight optimization. For optimizing the weights in DNN, Oppositional based FireFly Optimization (OFFO) is proposed. All the optimal results exhibit in the way that the accomplished error values between the output of the experimental values and the predicted qualities are firmly equivalent to zero in the designed system.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Balasubramanian ◽  
Thozhuvur Govindaraman Loganathan ◽  
R. Srimath

Purpose The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications. Design/methodology/approach Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties. Findings The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers. Originality/value This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 864
Author(s):  
Ayyappa Atmakuri ◽  
Arvydas Palevicius ◽  
Lalitnarayan Kolli ◽  
Andrius Vilkauskas ◽  
Giedrius Janusas

In recent years, natural fiber reinforced polymer composites have gained much attention over synthetic fiber composites because of their many advantages such as low-cost, light in weight, non-toxic, non-abrasive, and bio-degradable properties. Many researchers have found interest in using epoxy resin for composite fabrication over other thermosetting and thermoplastic polymers due to its dimensional stability and mechanical properties. In this research work, the mechanical and moisture properties of Caryota and sisal fiber-reinforced epoxy resin hybrid composites were investigated. The main objective of these studies is to develop hybrid composites and exploit their importance over single fiber composites. The Caryota and sisal fiber reinforced epoxy resin composites were fabricated by using the hand lay-up technique. A total of five different samples (40C/0S, 25C/15S, 20C/20S, 15C/25S, 0C/40S) were developed based on the rule of hybridization. The samples were allowed for testing to evaluate their mechanical, moisture properties and the morphology was studied by using the scanning electron microscope analysis. It was observed that hybrid composites have shown improved mechanical properties over the single fiber (Individual fiber) composites. The moisture studies stated that all the composites were responded to the water absorption but single fiber composites absorbed more moisture than hybrid composites.


Author(s):  
Sandhyarani Biswas ◽  
Prity Aniva Xess

Now-a-days, there is an increasing interest in hybrid composites made by combination of two or more different types of fiber in a common matrix because these materials offer a range of properties that cannot be attained with a single type of reinforcement. The fibres are either natural or synthetic and both types of fiber have advantages and disadvantages. Therefore, in this work a new class of hybrid composite reinforced with a synthetic fiber and a natural fiber is developed to get the advantage of both the fibres in terms of superior tribological properties and economy. The present research work is undertaken to investigate the erosion behaviour of short bamboo and glass fiber reinforced epoxy based hybrid composites.


2020 ◽  
Vol 10 (20) ◽  
pp. 7303
Author(s):  
Giulia Baietti ◽  
Tommaso D’Antino ◽  
Christian Carloni

The use of composite materials to strengthen masonry structures has become common practice within the civil engineering community. Steel-reinforced grout (SRG), which comprises high-strength steel fibers embedded in a mortar matrix, is part of the family of the fiber-reinforced cementitious matrix (FRCM) composites that represent a suitable alternative to fiber-reinforced polymer (FRP) composites for strengthening existing structures. Although studies on FRCMs have already reached a certain level of maturity, some key issues remain open, such as the role of matrix type and layout, substrate properties, and test rate. This paper focuses on some of these issues. The results of single-lap direct shear tests on masonry blocks strengthened with SRGs are presented to analyze the bond behavior between the composite material and the substrate. Four aspects are considered: (1) the change in the width of the SRG mortar matrix while keeping the width of the fiber sheet fixed; (2) the type of mortar used for the SRG; (3) the influence of the test rate, and (4) the type of substrate (i.e., concrete vs. masonry). The results obtained indicate the active role of the matrix layout and the importance of the test rate, encouraging further investigations to clarify these aspects.


MRS Advances ◽  
2016 ◽  
Vol 1 (12) ◽  
pp. 791-797
Author(s):  
Kabiru Mustapha ◽  
Martiale G. Zebaze Kana ◽  
Winston O. Soboyejo

ABSTRACTThis study presents a combine experimental and analytical investigation of the toughening behavior in natural fiber-reinforced earth-based composites. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through fiber reinforcement. The parameters investigated included a specially designed high strength earth-based matrix comprising of 60% laterite, 20% clay and 20% cement. The toughening behavior of whisker-reinforced earth-based matrix is analyzed in terms of a whisker bridging zone immediately behind the crack tip and interface strength. This approach is consistent with microscopy observations which reveal that intact bridging whiskers exist behind the crack tip as a result of debonding of the whisker-matrix interface. Debonding with constant frictional stress was obtained and this formed the basis for the analytical model considered and the underlying crack-microstructure interactions associated with Resistance-curve behavior was studied using in situ/ex situ optical microscopy to account for the bridging contribution to fracture toughness. The effect of multiple toughening mechanisms (debonding and crack bridging) was elucidated and the implications of the results are considered for potential applications in the design of robust earth-based building materials for sustainable eco-friendly homes.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document