Development of a pyrometallurgical technology for processing synthetic pyrolusite and chemisorption manganese oxide concentrate into metallic manganese and low-carbon ferroalloys

2019 ◽  
pp. 25-29
Author(s):  
D. Yu. Zhukov ◽  
◽  
Yu. M. Averina ◽  
2020 ◽  
Vol 1,2020 (1,2020 (124)) ◽  
pp. 30-35
Author(s):  
Velychko O ◽  
Yunshen Du ◽  
Mianovska Ya ◽  
Kamkina L ◽  
Ankuninov R

The aim of the work is to establish physicochemical patterns of behavior of carbon, silicon, manganese when using the method of oxygen purge of high-carbon ferromanganese. Method. The process of blowing red metal to sour is neglected. With the fusion of fused acid, it is more important to oxidize silicon. Its presence in metal is practical in the block of oxidized manganese. Because oxygen is an assimilation gas, the mixing processes of the converter bath components and the reduction of manganese oxides at the metal-slag interface do not develop properly during purging. The smelters of the medium-carbonaceous ferromanganese in the converter are characterized by a stable chemical warehouse and even a higher number of vimogs for this type of alloy. The low concentration of silicon in metal over a number of swimming trunks can be easily shoved with a hat of pre-purge bathtub with sour at the final stage of refining. The behavior of phosphorus in these smelts is not controlled. The content of P2O5 in the final slag is 0.1%. To achieve acceptable concentrations of phosphorus in the metal, it is necessary to use starting materials with a low phosphorus content. Scientific novelty.Taking into consideration the high affinity of silicon for oxygen, the physical and chemical basis for the production of medium-carbon ferromanganese, as well as metallic manganese and low-carbon ferromanganese, is the process of the interaction of manganese oxides of a certain basicity slag melt with silicon dissolved in ferromanganese (manganese), that is, as combined reduction -refining process to produce manganese ferroalloys with a given silicon content standard


2020 ◽  
Vol 983 ◽  
pp. 57-63
Author(s):  
Paul T. Craddock

Manganese oxide and metallic manganese have made a long and varied contribution to the production of iron and steel through the centuries, long before Sir Robert Hadfield’s alloy manganese steel first produced in 1882. Although quite well known empirically, this contribution has sometimes been misunderstood or misrepresented.The success of some of the early so-called ‘natural steels’ was the presence of manganese oxides in the iron ores used.Manganese oxide was already used as a flux from the early days of the production of crucible steel in Asia and it now appears that it was used as a flux from the inception of the otherwise very different later European crucible steel technologies. After the introduction of crucible steel making in Britain in the 18th century, foreign competitors believed that the reason for the success of the processes used at Sheffield was a secret flux and studies on recently discovered 18th century crucibles in Sheffield have shown that process was indeed fluxed with manganese oxide.The function of manganese in the later European crucible steel industry has been rather overshadowed and confused historically by the very different ‘Carburet of manganese’, a strange concoction, patented by Josiah Heath in 1839 added to iron or steel to purify the metal. At the time the chemistry of the process was misunderstood and many acrimonious and inaccurate claims were made, crucially confusing the very different functions of manganese oxide and manganese metal, overshadowing the part already played by manganese oxide for almost a century previously..Finally manganese and its salts played a crucial role in the Bessemer process of steel making.


Author(s):  
G. M. Greene ◽  
J. W. Sprys

The present study demonstrates that fracture surfaces appear strikingly different when observed in the transmission electron microscope by replication and in the scanning electron microscope by backscattering and secondary emission. It is important to know what form these differences take because of the limitations of each instrument. Replication is useful for study of surfaces too large for insertion into the S.E.M. and for resolution of fine detail at high magnification with the T.E.M. Scanning microscopy reduces sample preparation time and allows large sections of the actual surface to be viewed.In the present investigation various modes of the S.E.M. along with the transmission mode in the T.E.M. were used to study one area of a fatigue surface of a low carbon steel. Following transmission study of a platinum carbon replica in the T.E.M. and S.E.M. the replica was coated with a gold layer approximately 200A° in thickness to improve electron emission.


Author(s):  
J. Y. Koo ◽  
G. Thomas

High resolution electron microscopy has been shown to give new information on defects(1) and phase transformations in solids (2,3). In a continuing program of lattice fringe imaging of alloys, we have applied this technique to the martensitic transformation in steels in order to characterize the atomic environments near twin, lath and αmartensite boundaries. This paper describes current progress in this program.Figures A and B show lattice image and conventional bright field image of the same area of a duplex Fe/2Si/0.1C steel described elsewhere(4). The microstructure consists of internally twinned martensite (M) embedded in a ferrite matrix (F). Use of the 2-beam tilted illumination technique incorporating a twin reflection produced {110} fringes across the microtwins.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Author(s):  
M.T. Jahn ◽  
J.C. Yang ◽  
C.M. Wan

4340 Ni-Cr-Mo alloy steel is widely used due to its good combination of strength and toughness. The mechanical property of 4340 steel can be improved by various thermal treatments. The influence of thermomechanical treatment (TMT) has been studied in a low carbon Ni-Cr-Mo steel having chemical composition closed to 4340 steel. TMT of 4340 steel is rarely examined up to now. In this study we obtain good improvement on the mechanical property of 4340 steel by TMT. The mechanism is explained in terms of TEM microstructures4340 (0.39C-1.81Ni-0.93Cr-0.26Mo) steel was austenitized at 950°C for 30 minutes. The TMTed specimen (T) was obtained by forging the specimen continuously as the temperature of the specimen was decreasing from 950°C to 600°C followed by oil quenching to room temperature. The thickness reduction ratio by forging is 40%. The conventional specimen (C) was obtained by quenching the specimen directly into room temperature oil after austenitized at 950°C for 30 minutes. All quenched specimens (T and C) were then tempered at 450, 500, 550, 600 or 650°C for four hours respectively.


Author(s):  
C.K. Hou ◽  
C.T. Hu ◽  
Sanboh Lee

The fully processed low-carbon electrical steels are generally fabricated through vacuum degassing to reduce the carbon level and to avoid the need for any further decarburization annealing treatment. This investigation was conducted on eighteen heats of such steels with aluminum content ranging from 0.001% to 0.011% which was believed to come from the addition of ferroalloys.The sizes of all the observed grains are less than 24 μm, and gradually decrease as the content of aluminum is increased from 0.001% to 0.007%. For steels with residual aluminum greater than 0. 007%, the average grain size becomes constant and is about 8.8 μm as shown in Fig. 1. When the aluminum is increased, the observed grains are changed from the uniformly coarse and equiaxial shape to the fine size in the region near surfaces and the elongated shape in the central region. SEM and EDAX analysis of large spherical inclusions in the matrix indicate that silicate is the majority compound when the aluminum propotion is less than 0.003%, then the content of aluminum in compound inclusion increases with that in steel.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1lMn-0.8C-0.5V nominal wt%) is being studied in an attempt to characterise the morphology and mechanism of VC precipitation at the growth interface. In this alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the precipitation of VC at the austenite/ferrite interface, which reaction, termed interphase precipitation, occurs in a number of low- carbon HSLA and microalloyed medium- and high- carbon steels. Some observations of interphase precipitation in microalloyed low- and medium- carbon commercial steels are also reported for comparison as this reaction can be responsible for a significant increase in strength in a wide range of commercial steels.The experimental alloy was made as 50 g argon arc melts using high purity materials and homogenised. Samples were solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised at 1300 °C for 15 min. and isothermally transformed at 620 °C for 10-18hrs. and WQ. Specimens of microalloyed commercial steels were studied in either as-rolled or as- forged conditions. Detailed procedures of thin foil preparation for TEM are given elsewhere.


2019 ◽  
Author(s):  
Tsung Hung Lee ◽  
Fen-Hauh Jan

Sign in / Sign up

Export Citation Format

Share Document