scholarly journals Effect of Growth Conditions on Antibacterial Activity of Trichoderma harzianum against Selected Pathogenic Bacteria

Author(s):  
Jawad Anwar ◽  
Zafar Iqbal
2016 ◽  
Vol 5 (3) ◽  
pp. 27-32 ◽  
Author(s):  
Ahmed I. Khattab ◽  
Eltahir H. Babiker ◽  
Humodi A. Saeed

The objectives of this study were to isolate and identify Streptomyces from soil sediments as well as to optimize cultural growth conditions for maximum antibacterial productivity. A total of fifty soil sediments were collected from Red Sea, Sudan. The soil sediments were pretreated and cultivated on agar medium. Promising Streptomyces spp. were isolated by agar overlay method using indicator organisms. Optimization of chemical and physical culture conditions was carried out. The later was judged by assessment of antibacterial activity. Ethyl acetate was used to extract the secondary metabolite compounds. The separation of the active ingredients was performed using both thin layer chromatography (TLC) and gas chromatography-mass spectrometer (GC-MS). The results revealed nine strains of Streptomyces. Of them two (PS1 and PS28) isolates exhibited high activity against pathogenic bacteria. The optimum growth conditions were pH 7.5, temperature at 30°C, soyabean concentration 2.5 g/l, incubation period in 7 days, MgSO4.7H2O conc. 1g/l and K2HPO4 conc. 2.5g/l. TLC test showed three and two fragments from metabolites of PS1 and PS28 respectively, while the GC-MS analysis revealed eight and eleven compounds with antibacterial activity of PS1 and PS28 respectively. It is concluded that marine is promising source of secondary metabolites.Khattab et al., International Current Pharmaceutical Journal, February 2016, 5(3): 27-32


Author(s):  
EMELIA OPPONG BEKOE ◽  
MICHAEL WIAFE-KWAGYAN ◽  
JOYCELYN GAYSI

Objective: This study sought to preliminarily investigate the inhibitory effect of metabolites of Aspergillus chevalieri and Trichoderma harzianum on a number of pathogenic bacteria. Methods: The agar well diffusion method was employed to determine the antimicrobial activity of the fungal metabolites. The test microorganisms were Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa. Results: Both metabolites had broad-spectrum antibacterial activity. All the test organisms were susceptible to the A. chevalieri metabolites except for S. typhi. Both S. typhi and E. faecalis were however not susceptible to T. harzianum metabolites. P. aeruginosa was highly susceptible to both metabolites with the highest zone of inhibition of 26 mm for the stock metabolite. This activity was comparable to the standard, 10 µg/ml of ciprofloxacin. Conclusion: Metabolites of A. chevalieri and T. harzianum exhibited broad-spectrum activity, and this can be exploited as a source for novel antibiotics.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


2020 ◽  
Vol 18 ◽  
Author(s):  
Mulugeta Mulat ◽  
Fazlurrahman Khan ◽  
Archana Pandita

Background: Medicinal plants have been used for treatments of various health ailments and the practices as a remedial back to thousands of years. Currently, plant-derived compounds used as alternative ways of treatment for multidrug-resistant pathogens. Objective: In the present study, various parts of six medical plants such as Solanum nigrum, Azadirachta indica, Vitex negundo, Mentha arvensis, Gloriosa superba, and Ocimum sanctum were extracted for obtaining biological active constituents. Methods: Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-well plate spectroscopic reading were used to detect the extract’s antibacterial and antibiofilm properties. Results: The obtained extracts were tested for antimicrobial and antibiofilm properties at 25 mg/mL concentrations. Maximum antibacterial activity was observed in O. sanctum chloroform extract (TUCE) against Staphylococcus aureus (24.33±1.52 mm), S. nigrum acetone extract (MAAC) against Salmonella Typhimurium (12.6 ± 1.5 mm) and Pseudomonas aeruginosa (15.0 ±2.0 mm). Only TUCE exhibited antibacterial activity at least a minimum inhibitory concentration of 0.781 mg/mL. Better antibiofilm activities were also exhibited by petroleum extracts of G. superba (KAPE) and S. nigrum (MAPE) against Escherichia coli, S. Typhimurium, P. aeruginosa and S. aureus. Moreover, S. nigrum acetone extract (MAAC) and O. sanctum chloroform extract (TUCE) were showed anti-swarming activity with a reduction of motility 56.3% against P. aeruginosa and 37.2% against S. aureus. MAAC also inhibits Las A activity (63.3% reduction) in P. aeruginosa. Conclusion: Extracts of TUCE, MAAC, MAPE, and KAPE were exhibited antibacterial and antibiofilm properties against the Gram-positive and Gram-negative pathogenic bacteria. GCMS identified chemical constituents are responsible for being biologically active.


Author(s):  
ANNAMALAI MADURAM ◽  
RAJU KAMARAJ

Objectives: The objectives of the study were to study the antibacterial activity for the various extracts of Clausena dentata against human pathogens. Clausena (Rutaceae) is a genus of about 23 species of unarmed trees and shrubs. The stem bark of C. dentata is used in veterinary medicine for the treatment of wounds and sprains. Even though C. dentata has a lot of potential medical uses, the study of microbiological properties is very scarce. Methods: The plant C. dentata was collected from Kadagaman, near Tiruvannamalai, Tamil Nadu, India, and authenticated by Centre for Advanced Study in Botany, University of Madras, Chennai. The dry powder of stem bark was extracted with hexane, chloroform, and methanol. The extracts were subjected to qualitative phytochemical screening and antibacterial activity against human pathogenic bacteria such as Escherichia coli, Salmonella Typhi, Klebsiella pneumonia, Vibrio cholerae, and Staphylococcus aureus and compared with ciprofloxacin. Results: Qualitative chemical tests revealed the presence of various phytochemicals such as alkaloids, glycosides, carbohydrate, proteins and amino acids, phytosterols, and volatile oil. The antibacterial activity result reveals that all the extracts were are more active against V. cholerae. The activity against Pseudomonas aeruginosa was mild. Conclusion: The activity against V. cholerae was comparable with that of 5 μg/mL ciprofloxacin at the concentration of C. dentata 40 μg/mL. The orders of antibacterial activity against human pathogenic bacteria are hexane, methanol, and chloroform extract of C. dentata.


Sign in / Sign up

Export Citation Format

Share Document