scholarly journals Loop-mediated isothermal amplification: an effective method for express-diagnostics of cancer

2018 ◽  
Vol 14 (2) ◽  
pp. 88-99 ◽  
Author(s):  
Yu. A. Makarova ◽  
A. A. Zotikov ◽  
G. A. Belyakova ◽  
B. Ya. Alekseev ◽  
M. Yu. Shkurnikov

The review is devoted to loop-mediated isothermal amplification (LAMP) – a novel molecular diagnostic method that has recently become increasingly popular. Unlike polymerase chain reaction, LAMP does not require thermal cycling; DNA or RNA amplification occurs at a constant temperature (about 65 °C) with 4 or 6 primers. This is a fast, highly-sensitive, and highly specific method, which does not require expensive equipment, where visual detection of the reaction products is performed by the unaided eye. LAMP is successfully used for the diagnosis of multiple viruses, bacteria, and other pathogens (including those in food). Moreover, it can be applied for the detection of singlenucleotide polymorphisms. Recently, a modified LAMP assay – one-step nucleic acid amplification (OSNA) – was validated for metastasis detection. OSNA was demonstrated to have almost the same sensitivity and specificity as standard diagnostic methods (sometimes even higher). Particular attention is paid to the mechanism of LAMP, primer design, and diagnostics of cancer using OSNA.

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1950
Author(s):  
Woong Sik Jang ◽  
Da Hye Lim ◽  
YoungLan Choe ◽  
Hyunseul Jee ◽  
Kyung Chul Moon ◽  
...  

Malaria, caused by the parasite Plasmodium and transmitted by mosquitoes, is an epidemic that mainly occurs in tropical and subtropical regions. As treatments differ across species of malarial parasites, there is a need to develop rapid diagnostic methods to differentiate malarial species. Herein, we developed a multiplex malaria Pan/Pf/Pv/actin beta loop-mediated isothermal amplification (LAMP) to diagnose Plasmodium spp., P. falciparum, and P. vivax, as well as the internal control (IC), within 40 min. The detection limits of the multiplex malaria Pan/Pf/Pv/IC LAMP were 1 × 102, 1 × 102, 1 × 102, and 1 × 103 copies/µL for four vectors, including the 18S rRNA gene (Plasmodium spp.), lactate dehydrogenase gene (P. falciparum), 16S rRNA gene (P. vivax), and human actin beta gene (IC), respectively. The performance of the LAMP assay was compared and evaluated by evaluating 208 clinical samples (118 positive and 90 negative samples) with the commercial RealStar® Malaria S&T PCR Kit 1.0. The developed multiplex malaria Pan/Pf/Pv/IC LAMP assay showed comparable sensitivity (100%) and specificity (100%) with the commercial RealStar® Malaria S&T PCR Kit 1.0 (100%). These results suggest that the multiplex malaria Pan/Pf/Pv/IC LAMP could be used as a point-of-care molecular diagnostic test for malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Domenico Rizzo ◽  
Nicola Luchi ◽  
Daniele Da Lio ◽  
Linda Bartolini ◽  
Francesco Nugnes ◽  
...  

AbstractThe red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory validations demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind panel. The LAMP assay and the qPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive, and both were more sensitive than the conventional PCR (sensitivity > 103 to the same starting matrix). The visual LAMP protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A. bungii and in the management of its outbreaks.


2019 ◽  
Vol 57 (4) ◽  
Author(s):  
Matthew R. Watts ◽  
Rady Kim ◽  
Vishal Ahuja ◽  
Gemma J. Robertson ◽  
Yasmin Sultana ◽  
...  

ABSTRACTStrongyloides stercoraliscan cause disease that ranges from asymptomatic chronic infection to fatal hyperinfection. Diagnosis from stool can be challenging because the most sensitive conventional tests require live larvae to be effective and there can be low larval output in chronic infection. Nucleic acid amplification tests (NAAT) have been developed to complement existing diagnostic methods. We compared a recently developed loop-mediated isothermal amplification (LAMP) assay with a real-time PCR that has previously been validated with larval microscopy. The limits of detection—quantified using serial dilutions of DNA extracts from singleStrongyloides rattithird-stage (L3) larvae spiked into approximately 250 µl of 5 differentS. stercoralis-negative stool specimens—were 10−3(1/5 replicates) and 10−2(1/5 replicates) dilutions for PCR and LAMP, respectively. PCR was positive for 4/5 replicates at 10−2. LAMP was compared to PCR using extracts from 396 stool specimens collected in Bangladesh and Australia, of which 53 were positive and 343 were negative by PCR. The positive percentage agreement of LAMP was 77.3% (95% score confidence interval [CI], 64.5 to 86.6). The negative percentage agreement was 100% (95% CI, 98.9 to 100). In a preliminary investigation, PCR and LAMP assays were positive using DNA extracted from serum (PCR, 3/16 extracts; LAMP, 2/16 extracts) and bronchoalveolar lavage fluid (PCR and LAMP, 2/2 extracts), demonstrating proof of concept. Compared to PCR, the lower number of positive results using the LAMP assay may have been due to reaction inhibitors and DNA degradation, and strategies to improve the LAMP assay are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Moreira de Avelar ◽  
Débora Moreira Carvalho ◽  
Ana Rabello

Visceral leishmaniasis (VL) is considered a major public health concern in Brazil and several regions of the world. A recent advance in the diagnosis of infectious diseases was the development of loop-mediated isothermal amplification (LAMP). The aim of this study was to develop and evaluate a new LAMP assay for detection of K26 antigen-coding gene of L. donovani complex. A total of 219 blood samples of immunocompetent patients, including 114 VL cases and 105 non-VL cases, were analyzed for the diagnosis of VL in the present study. Diagnostic accuracy was calculated against a combination of parasitological and/or serological tests as a reference standard. The results were compared to those of kDNA Leishmania-PCR. The detection limit for the K26-Lamp assay was 1fg L. infantum purified DNA and 100 parasites/mL within 60 min of amplification time with visual detection for turbidity. The assay was specific for L. donovani complex. Sensitivity, specificity, and accuracy were 98.2%, 98.1%, and 98.2%, respectively, for K26-LAMP and 100%, 100%, and 100%, respectively, for kDNA Leishmania-PCR. Excellent agreement was observed between K26-LAMP and kDNA Leishmania-PCR assays (K = 0.96). A highly sensitive and specific LAMP assay targeting K26 antigen-coding gene of L. donovani complex was developed for diagnosis in peripheral blood samples of VL patients.


2017 ◽  
Vol 07 (03) ◽  
pp. 042-048
Author(s):  
Gunimala Chakraborty ◽  
Indrani Karunasagar ◽  
Anirban Chakraborty

AbstractDelivery of quality healthcare in case of an infectious disease depends on how efficiently and how quickly the responsible pathogens are detected from the samples. Molecular methods can detect the presence of pathogens in a rapid and sensitive manner. Over the years, a number of such assays have been developed. However, these methods, although highly reliable and efficient, require use of expensive equipment, reagents, and trained personnel. Therefore, development of molecular assays that are simple, rapid, cost-effective, yet sensitive, is highly warranted to ensure efficient management or treatment strategies. Loop-mediated isothermal amplification (LAMP), a technique invented in the year 2000, is a novel method that amplifies DNA at isothermal conditions. Since its invention, this technique has been one of the most extensively used molecular diagnostic tools in the field of diagnostics offering rapid, accurate and cost-effective diagnosis of infectious diseases. Using the LAMP principle, many commercial kits have been developed in the last decade for a variety of human pathogens including bacteria, viruses and parasites. Currently LAMP assay is being considered as an effective diagnostic tool for use in developing countries because of its simple working protocol, allowing even an onsite application. The focus of this review is to describe the salient features of this technique the current status of development of LAMP assays with an emphasis on the pathogens of clinical significance.


2008 ◽  
Vol 57 (4) ◽  
pp. 439-443 ◽  
Author(s):  
Basu Dev Pandey ◽  
Ajay Poudel ◽  
Tomoko Yoda ◽  
Aki Tamaru ◽  
Naozumi Oda ◽  
...  

A number of nucleic acid amplification assays (NAAs) have been employed to detect tubercle bacilli in clinical specimens for tuberculosis (TB) diagnosis. Among these, loop-mediated isothermal amplification (LAMP) is an NAA possessing superior isothermal reaction characteristics. In the present study, a set of six specific primers targeting the Mycobacterium tuberculosis 16S rRNA gene with high sensitivity was selected and a LAMP system (MTB-LAMP) was developed. Using this system, a total of 200 sputum samples from Nepalese patients were investigated. The sensitivity of MTB-LAMP in culture-positive samples was 100 % (96/96), and the specificity in culture-negative samples was 94.2 % (98/104, 95 % confidence interval 90.5–97.9 %). The positive and negative predictive values of MTB-LAMP were 94.1 and 100 %, respectively. These results indicate that this MTB-LAMP method may prove to be a powerful tool for the early diagnosis of TB.


BioTechniques ◽  
2020 ◽  
Vol 69 (3) ◽  
pp. 178-185 ◽  
Author(s):  
Yinhua Zhang ◽  
Guoping Ren ◽  
Jackson Buss ◽  
Andrew J Barry ◽  
Gregory C Patton ◽  
...  

Loop-mediated isothermal amplification (LAMP) is a versatile technique for detection of target DNA and RNA, enabling rapid molecular diagnostic assays with minimal equipment. The global SARS-CoV-2 pandemic has presented an urgent need for new and better diagnostic methods, with colorimetric LAMP utilized in numerous studies for SARS-CoV-2 detection. However, the sensitivity of colorimetric LAMP in early reports has been below that of the standard RT-qPCR tests, and we sought to improve performance. Here we report the use of guanidine hydrochloride and combined primer sets to increase speed and sensitivity in colorimetric LAMP, bringing this simple method up to the standards of sophisticated techniques and enabling accurate, high-throughput diagnostics.


2013 ◽  
Vol 59 (2) ◽  
pp. 436-439 ◽  
Author(s):  
Martin Jensen Søe ◽  
Mikkel Rohde ◽  
Jens Mikkelsen ◽  
Peter Warthoe

BACKGROUND Nucleic acid tests that can simultaneously detect multiple targets with high sensitivity, specificity, and speed are highly desirable. To meet this need, we developed a new approach we call the isoPCR method. METHODS The isoPCR method is a 2-stage nested-like nucleic acid amplification method that combines a single multiplex preamplification PCR with subsequent distinct detection of specific targets by use of isothermal amplification. We compared isoPCR to nested quantitative PCR (qPCR), loop-mediated isothermal amplification (LAMP), and nested LAMP (PCR followed by LAMP), for detection of DNA from Candida glabrata. We evaluated the method's multiplex capability for detecting low copy numbers of pathogens commonly involved in sepsis. RESULTS IsoPCR provided detection of 1 copy of Candida glabrata, an LOD that was 5-fold lower than a nested qPCR assay (5 copies), while the amplification time was simultaneously halved. Similarly, the LOD for isoPCR was lower than that for a LAMP assay (1000 copies) and a nested LAMP assay (5 copies). IsoPCR required recognition of 6 regions for detection, thereby providing a theoretically higher specificity compared to nested qPCR (4 regions). The isoPCR multiplexing capability was demonstrated by simultaneous detection of 4 pathogens with individual LODs of 10 copies or fewer. Furthermore, the specificity of isoPCR was demonstrated by successful pathogen detection from samples with more than 1 pathogen present. CONCLUSIONS IsoPCR provides a molecular diagnostic tool for multiplex nucleic acid detection, with an LOD down to 1 copy, high theoretical specificity, and halving of the amplification time compared to a nested qPCR assay.


Sign in / Sign up

Export Citation Format

Share Document