STUDIES ON THE PHYSIOLOGY OF FLOWERING AND FRUIT GROWTH IN MANGIFERA INDICA L. VI. - HORMONAL CONTROL OF FRUIT DEVELOPMENT AND ITS POSSIBLE SIGNIFICANCE TO BIENNIAL BEARING

1972 ◽  
pp. 155-163 ◽  
Author(s):  
K. Chacko ◽  
R.N. Singh ◽  
Raj B. Kachru
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1332
Author(s):  
Alessandro Carella ◽  
Giuseppe Gianguzzi ◽  
Alessio Scalisi ◽  
Vittorio Farina ◽  
Paolo Inglese ◽  
...  

Studying mango (Mangifera indica L.) fruit development represents one of the most important aspects for the precise orchard management under non-native environmental conditions. In this work, precision fruit gauges were used to investigate important eco-physiological aspects of fruit growth in two mango cultivars, Keitt (late ripening) and Tommy Atkins (early-mid ripening). Fruit absolute growth rate (AGR, mm day−1), daily diameter fluctuation (ΔD, mm), and a development index given by their ratio (AGR/ΔD) were monitored to identify the prevalent mechanism (cell division, cell expansion, ripening) involved in fruit development in three (‘Tommy Atkins’) or four (‘Keitt’) different periods during growth. In ‘Keitt’, cell division prevailed over cell expansion from 58 to 64 days after full bloom (DAFB), while the opposite occurred from 74 to 85 DAFB. Starting at 100 DAFB, internal changes prevailed over fruit growth, indicating the beginning of the ripening stage. In Tommy Atkins (an early ripening cultivar), no significant differences in AGR/ΔD was found among monitoring periods, indicating that both cell division and expansion coexisted at gradually decreasing rates until fruit harvest. To evaluate the effect of microclimate on fruit growth the relationship between vapor pressure deficit (VPD) and ΔD was also studied. In ‘Keitt’, VPD was the main driving force determining fruit diameter fluctuations. In ‘Tommy Atkins’, the lack of relationship between VPD and ΔD suggest a hydric isolation of the fruit due to the disruption of xylem and stomatal flows starting at 65 DAFB. Further studies are needed to confirm this hypothesis.


2004 ◽  
Vol 129 (3) ◽  
pp. 280-286 ◽  
Author(s):  
Aman Ullah Malik ◽  
Zora Singh

Changes in endogenous free polyamines (putrescine, spermidine, spermine) were monitored from fruit set (fruit diameter 4.6 ± 0.5 mm, wt 0.09 ± 0.05 g) until 1 week before the expected harvest time in `Kensington Pride' and `Glen' to examine their role during mango (Mangifera indica L.) fruit development. Polyamines (PAs) in the pericarp tissues (exocarp and mesocarp) were estimated throughout the fruit development period, while estimations from growing ovules were started from 41 days after fruit set (DAFS). During fruit ripening, ethylene production and endogenous free PAs in skin and pulp of `Kensington Pride' mango were also monitored. PA contents of pericarp declined between fruit set and maturity from 788 to 101 nmol·g-1 fresh weight (FW) in `Kensington Pride' and from 736.6 to 89.6 nmol·g-1 FW in `Glen' during fruit development. Spermidine (SPD) and spermine (SPM) were higher than putrescine (PUT) during the initial phase of fruit growth. The highest levels of free PAs, especially SPD and SPM, at the initial stages of fruit growth suggest a potential role during the cell division phase and not in subsequent fruit development. Ovule seems to be a rich source of PAs as evident from 2.3- and 2.7-fold higher total PAs than pericarp tissues in `Kensington Pride' and `Glen', respectively. During fruit ripening of `Kensington Pride', total PAs increased in skin and pulp tissues along with the climacteric rise of ethylene, and reached maximum levels (skin 796, pulp 314 nmol·g-1 FW) on day 4 of ripening. Skin exhibited 55.8% higher mean free PAs than the pulp. PUT dominated both in skin and pulp tissues. The simultaneous increase of ethylene and free PAs during fruit ripening suggests that their biosynthesis may not be competitive, and free PAs may have evolved as a response to increased biosynthesis of ethylene.


2018 ◽  
Vol 40 (2) ◽  
Author(s):  
Lorena Moreira Carvalho Lemos ◽  
Luiz Carlos Chamhum Salomão ◽  
Dalmo Lopes de Siqueira ◽  
Olinto Liparini Pereira ◽  
Paulo Roberto Cecon

Abstract There are little information in the scientific literature on flowering and fruiting of ‘Ubá’ mango trees. These information enables to know the proportion of hermaphrodite flowers in inflorescence, fruit set percentage and developmental stages of the fruit. In this study evaluations on inflorescence and fruit development of the ‘Ubá’ mango tree (Mangifera indica L.) were carried out, as well as the determination of the required number of heat units for full fruit development. Thirty branches whose terminal buds were swollen were selected from five mango trees. With the aid of a camera and a caliper, the panicle and fruit development were evaluated weekly until full fruit development. A digital thermometer was used to record ambient temperatures during fruit development in order to estimate the number of heat units required for complete development of the fruits. Male and hermaphrodite flowers of the panicles were also identified and counted. The developmental cycle of ‘Ubá’ mango from the beginning of apical bud swelling to commercial harvest of the fruit lasted 168 days in 2011 and 154 days in 2012. The number of hermaphrodite flowers and the percentage of fruit set in the inflorescence in 2011 were 32.3 and 0.066%, respectively; and 122.1 and 0.099% in 2012, respectively. There was accumulation of 3,173 heat units from flower bud swelling to full development of the ‘Ubá’ mangoes.


2017 ◽  
Vol 39 (2) ◽  
Author(s):  
LUCAS EDUARDO DE OLIVEIRA APARECIDO ◽  
RAFAEL BIBIANO FERREIRA ◽  
GLAUCO DE SOUZA ROLIM ◽  
BIANCA SARZI DE SOUZA ◽  
PAULO SERGIO DE SOUZA

ABSTRACT The influence of climate on the development of lychee fruit is complex, but few studies have discussed the problem. We developed agrometeorological models for simulating the development of fruit fresh matter (FM), fruit dry matter (DM), fruit length (LE), fruit diameter (DI), fruit volume (VO), and fruit number per cluster (FN) of the “Bengal” lychee cultivar as functions of climatic conditions. We conducted three analyses: (a) the influence of mean meteorological elements on the rates of fruit growth, (b) estimation of fruit development by the agrometeorological models using sigmoidal adjustments, and (c) simulation of fruit development using multiple nonlinear regression of two meteorological elements to improve the accuracy. A rate of water deficit (WD) near 5 mm d-1 maximised FM, DM, LE, DI, and VO. Increases in potential evapotranspiration (PET), degree days (DD), and actual evapotranspiration (AET) were correlated with increases in VO and decreases in LE and NF. Models estimating fruit development indicated that the accumulation of WD, PET, AET, and DD had sigmoidal relationships with all variables of fruit growth except FN. FN decreased as WD, PET, AET, and DD increased. The adjusted multivariate models were accurate, with the largest error of 6.45 cm3 (VO). The best models were: FM = f(SWD, DD), LE = f(SAET, DD), DI = f(SWD, DD), VO = f(SWD, DD), and FN = f(SAET, WD).


2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


2008 ◽  
Vol 35 (5) ◽  
pp. 403 ◽  
Author(s):  
Eva Domínguez ◽  
Gloria López-Casado ◽  
Jesús Cuartero ◽  
Antonio Heredia

The cuticle of a plant plays an important role in many physiological events of fruit development and ripening. Despite this, little is known about cuticle formation and development. We include a detailed morphological study at the microscopic level of cuticle during fruit growth and ripening using tomato as a fruit model. In addition, a study of the differences in cuticle thickness and composition during development is included. The four genotypes studied in this work showed a similar timing of the main morphological events: initiation of epidermal differentiation, changes in the distribution of the lipid, pectin and cellulose material within the cuticle, appearance of pegs, beginning of cuticle invaginations, maximum thickness and loss of polysaccharidic material. Fruit growth, measured by fruit diameter, showed a positive correlation with the increase of cuticle thickness and the amount of cuticle and their cutin and polysaccharide components per fruit unit during development. By contrast, cuticle waxes showed a different behaviour. Two important characteristics of cuticle growth were observed during tomato fruit development. First, the amount of cuticle per surface area reached its maximum in the first 15 days after anthesis and remained more or less constant until ripening. Second, there was a significant loss of polysaccharidic material from the beginning of ripening (breaker stage) to full red ripe.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 669h-670
Author(s):  
Chung-Ruey Yen ◽  
Jer-Way Chang

Fruit growth curves of three longan varieties showed single sigmoid. Seed was the major sink in longan at early fruit development. Aril grew only after seed had approached full development. Early `Yangtaoyeh' grew more rapidly than two later varieties. Desweeting, levels of aril total soluble solids (TSS) increased to maximum and then declined gradually at later fruit development, occurs often in longan. Variation of desweeting rate among varieties was significant. Increases of fruit weight during desweeting (from dates of maximum TSS to end of experiment) were 55.4%, 50.9%, and 7.3% for `Yangtaoyeh', `Fenko', and `Shihyueh', respectively. Periods of water contents increase in aril coincided with the changes of fruit weight of three varieties. Dilution of TSS by water inflow was one of major factor of desweeting in longan fruit. Girdling did not slow down decline of aril total soluble solids.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 687f-688
Author(s):  
Chunlin Xiao ◽  
Mosbah M. Kushad

5'-methylthioadenosine (MTA) nucleosidase (EC.2.2.2.28) and 5-methylthioribose (MTR) kinase (EC.2.7.1.100) activities were evaluated in `rin', `nor', and `Rutgers' tomato fruit during development and ripening. Changes in the activities of these enzymes were compared to ethylene biosynthesis. MTA nucleosidase and MTR kinase activities in `rin' and `nor' were ≈30% and 22%, respectively, lower than `Rutgers' during the first 2 weeks of fruit development. In `Rutgers', activities of these enzymes declined sharply until fruit maturity. Shortly before climacteric rise in ethylene synthesis, MTA nucleosidase, and MTR kinase activities increased, reaching a maximum level before peak ethylene synthesis then declined when fruit started to approach senescence. Whereas, `rin' and `nor' mutants exhibited no climacteric rise in ethylene synthesis and no change in MTA nucleosidase or MTR kinase activities, following their decline after 2 weeks of growth. A rapid increase in ethylene synthesis was observed when mature green `rin' and `nor' fruit were wounded. This increase in ethylene was paralleled by an increase in MTA nucleosidase and MTR kinase activities. However, increase in wound ethylene, MTA nucleosidase, and MTR kinase activities in `rin' and `nor' was ≈40% less than what we had previously reported in `Rutgers'. Relationship of MTA and MTR kinase activities to fruit growth, development, ripening, and natural and wound ethylene biosynthesis will be described.


Sign in / Sign up

Export Citation Format

Share Document