EFFECTS OF LIGHTING CYCLE ON DAILY CO2 EXCHANGE AND DRY WEIGHT INCREASE OF POTATO PLANTLETS CULTURED IN VITRO PHOTOAUTOTROPHICALLY

1995 ◽  
pp. 213-218 ◽  
Author(s):  
M. Hayashi ◽  
K. Fujiwara ◽  
T. Kozai ◽  
M. Tateno ◽  
Y. Kitaya
HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Ruining Li ◽  
Wenwen Huang ◽  
Xiaoxiao Wang ◽  
Xiaoying Liu ◽  
Zhigang Xu

The objectives of this study were to determine the effects of yellow light (Y), green light (G), and two blue lights (B) at different wavelengths in conjunction with red light (R) on the growth and morphogenesis of potato plantlets in vitro. Randomized nodal explants were cut into 1.0–1.5 cm pieces and were grown under five different light conditions: fluorescent white light (FL); the combined spectra of R, Y, and B at 445 nm (R630B445Y); the combined spectra of R, G, and B at 445 nm (R630B445G); the combined spectra of R, Y, and B at 465 nm (R630B465Y); and the combined spectra of R, G, and B at 465 nm (R630B465G). Morphogenesis and physiological parameters were investigated. The results showed that R630B445Y and R630B465Y increased the fresh weight (FW), dry weight (DW), stem diameter, blade number, leaf area, specific leaf weight (SLW), and the health index of potato plantlets in vitro; root activity increased significantly; and soluble sugar, soluble protein, and starch also increased. The addition of Y to the combined spectra of R and B contributed to the growth, development, and morphogenesis more than the combined spectra of R and B with G, and B at 445 nm was more effective at promoting plant growth than was B at 465 nm.


2017 ◽  
Vol 3 (5) ◽  
pp. 188
Author(s):  
Bilter Anton Sirait ◽  
Rosa Charloq

<p class="Els-Abstract-text"><em>In vitro</em> preliminary studies is candidate tolerant of potato (<em>Solanum tuberosum</em> L.) to the drought stress. This study aimed to determine the characters of potato after being exposed to <em>in vitro</em> drought stress conditions using Polyethylene Glycol PEG.  This research was conducted at the Tissue Culture Laboratory, UPT Balai Benih Induk Hortikultura Dinas Pertanian Provinsi Sumatera Utara, in Medan and other places in January 2015 until May 2015. This study used Completely Randomized non Factorial Design namely PEG (P) comprising of two levels, namely: P1 = 5 000 mg · L<sup>–</sup><sup>1</sup>, P2 = 6 000 mg · L<sup>–</sup><sup>1</sup>.  The results showed that increasing the concentration of PEG resulted in reduction of the percentage of plantlets survival, reduced plantlets height and plantlets dry weight but  the increase in  the total protein and leaf chlorophyll. Although the banding pattern is relatively the same, there is a brighter visible banding pattern on potato plantlets with OPAA 09  in the range of 65 bp to 75 bp with sequences of GTGGGTGCCA.</p>


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 515F-515
Author(s):  
Genhua Niu ◽  
Makio Hayashi ◽  
Toyoki Kozai

Potato (Solanum tuberosum L. cv. Benimaru) plantlets were cultured under four lighting cycles (photoperiod/dark period: 16 h/8 h, 4 h/2 h, 1 h/0.5 h, and 0.25 h/0.125 h) photoautotrophically (without sugar in the medium), and photomixotrophically (with sugar in the medium) in vitro for 28 days. Simulations of time courses of CO2 concentration in the vessel (Ci) and dry weight accumulation of the plantlets cultured photoautotrophically were conducted using a previously developed model (Niu and Kozai, 1997). While underestimation and overestimation of time courses of Ci in some treatments were observed, the simulated results of Ci and dry weight accumulation of the plantlets generally agreed with the measured ones. The difference of net photosynthetic rate response to Ci throughout the culture period was examined between the plantlets cultured photoautotrophically and photomixotrophically. Quantitative relationship between daily net photosynthetic rate (daily net production) and vessel ventilation rate per plantlet was simulated under various CO2 levels outside the vessel for given sizes of potato plantlets cultured photoautotrophically in vitro to aid appropriate CO2 enrichment and vessel design in commercial micropropagation.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 380-382 ◽  
Author(s):  
Ruey-Chi Jao ◽  
Wei Fang

Effects of concurrent vs. alternating blue and red light using light-emitting diodes (LEDs) on the photomixotrophic growth of potato plantlets in vitro were investigated. All seven treatments had the same 5.53 mol·m-2 daily light integral (DLI), photoperiod (16-hour day/8-hour night) and similar proportion of red light (45%) and blue light (55%). Results showed that the fresh/dry weight accumulation of potato plantlets in vitro under the concurrent blue and red light was superior than that under the alternating blue and red light, indicating that the simultaneous coexistence of blue and red light are necessary for optimum plantlet growth. Low PPF with long duration was better than high PPF with short duration under same DLI. Within the concurrent blue and red light treatments, when the duration of blue light was shorter than that of red light, timing of the blue light affected the growth of potato plantlets in vitro. Providing blue and red light together at the beginning of the photoperiod resulted in optimal growth, however plantlets illuminated with alternately blue and red light had significantly less fresh/dry weight accumulation.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1011A-1011
Author(s):  
Jung Eek Son ◽  
Yil Jang ◽  
Jung Hyuk Seo

Supporting materials for rooting have a considerable influence on the growth and quality of in vitro plantlets. Various supporting materials (rockwool, perlite, vermiculite, and polyurethane) and nutrient supply cycles (12, 24, 36, and 48 hours) were examined to find the optimum conditions for photoautotrophic micropropagation of potato plantlets in the nutrient-circulated micropropagation (NCM) system. In the NCM system, nutrient solution was circulated between the culture vessel and the nutrient reservoir. A plug cell tray with 70 plantlets was placed inside. The number of air exchanges was 10 hours under forced ventilation. Nodal leafy cuttings of plantlets were cultured at CO2 concentrations (mol·mol-1)/PPF s (mol·m-2·s-1) of 350/80, 700/120, and 1500/250 on day 5-11, 12-18, and 19-28, respectively, for all treatments. All growth factors of in vitro plantlets grown for 28 days using rockwool, perlite and vermiculite were greater than those grown using polyurethane. Dry weight of plantlets grown using rockwool was eight times greater than those grown using polyurethane. The same results were obtained in the growth and survival percentages 14 days after transplanting to ex vitro conditions. Optimum nutrient supply cycles were 12, 24, and 48 hours when perlite, rockwool, and vermiculite were used as supporting materials, respectively. It was considered that the range of optimum nutrient supply cycle was affected by water retention characteristics of supporting materials. This study proved that the supporting material and the nutrient supply cycle were very important environmental factors in photoautotrophic mass propagation.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 312
Author(s):  
Nolwenn Hymery ◽  
Xavier Dauvergne ◽  
Halima Boussaden ◽  
Stéphane Cérantola ◽  
Dorothée Faugère ◽  
...  

Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications. Selected halophytic species from diverse natural habitats were examined for their in vitro anti-mycotoxin activities, through viability evaluation of Madin-Darby Bovine Kidney (MDBK) and intestinal porcine enterocyte (IPEC-J2) cell lines. Besides, the in vitro antioxidant activities of plant extracts were assessed (total antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging bioassays). Of the 12 species, Galium arenarium, Convolvulus soldanella and Eryngium campestre exhibited the most protective action on MDBK and IPEC-J2 cells against zearalenone (ZEN) or T2 toxin contamination (restoring about 75% of cell viability at 10 μg·mL−1) without inflammation response. They also had strong antioxidant capacities (Inhibitory concentration of 50% (IC50) < 100 μg·mL−1 for DPPH radical and total antioxidant capacity (TAC) of 100 to 200 mg Ascorbic Acid Equivalent (AAE)·g−1 Dry Weight), suggesting that cell protection against intoxication involves antioxidant action. A bio-guided study showed that fractions of G. arenarium extract protect MDBK cells against T2 or ZEN toxicity and several major compounds like chlorogenic acid and asperuloside could be involved in this protective effect. Overall, our results show that the halophytes G. arenarium, C. soldanella and E. campestre should be considered further as new sources of ingredients for livestock feed with protective action against mycotoxin intoxication.


Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 57
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
Nada Benajiba ◽  
...  

Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some bioactive components were determined and analyzed by using a spectrophotometer. Gas chromatography and mass spectrometry (GC–MS) was used for the volatile compounds, while an Atomic absorption spectrometer was used for mineral determinations. Red variety achieved the highest antioxidant activities. The total flavonoids were between (12.56 and 353.53 mg Quercetin/gin dry weight) (dw) and the total phenol was (8.75–25.73 mg/g dw). Leek, Yellow and Green extracts achieved highly anti-inflammatory values (3.71–4.01 μg/mL) followed by Red and Baby extracts, respectively. The highest contents of sodium, potassium, zinc, and calcium were established for Red onions. Furfuraldehyde, 5-Methyl-2-furfuraldehyde, 2-Methyl-2-pentenal, and 1-Propanethiol were the most predominant, followed by a minor abundance of the other compounds such as Dimethyl sulfide, Methyl allyl disulfide, Methyl-trans-propenyl-disulfide, and Methyl propyl disulfide. The results recommend that these varieties could act as sources of essential antioxidants and anti-inflammatories to decrease inflammation and oxidative stresses, especially red onions that recorded high activities.


Sign in / Sign up

Export Citation Format

Share Document