PEST AND DISEASE MANAGEMENT FOR CROP PRODUCTION INSIDE GREENHOUSES

2006 ◽  
pp. 89-102 ◽  
Author(s):  
A.R. Syed
2021 ◽  
Vol 12 (1) ◽  
pp. 696-698
Author(s):  
Asha Renjith ◽  
Payal Lodha

Piper nigrum Linn. (Black pepper)  belongs to the family Piperaceae and an economically and medicinally important spice and is a native of Southern India. Leaf marginal gall is transmitted by Liothrips karnyi belonging to family Phlaeothripidae of order Thysanoptera (Thrips). Insect induced galls arise due to growth reaction of plants due to the attack of cecidozoa, also known as zoocecidia. The growth and development of the host plant alter due to the infestation of the insect, which involves certain complex phenomena. The different groups of cecidozoa influence the plants in such a way as to produce galls at different stages in their life history. Most of the cecidozoa cause galls only in their developmental stages, but some of them are capable of inducing galls both in larval as well as adult stages. The crop production in India has been adversely affected due to the infestation of pests. And it is necessary to use different approaches of disease management to curb the infestation, and significant researchers have shown progress to protect the crops in an eco-friendly manner. Piperine exhibits diverse pharmacological activities like antihypertensive, antiplatelets, antioxidant, antitumor, antipyretic, analgesic, anti-inflammatory, anti-diarrheal, antibacterial, antifungal, anti-reproductive, insecticidal activities. In the present investigation, the biological method of disease management of marginal leaf gall transmitted by Liothrips karnyi has been undertaken. The biological control of leaf diseases has been significant on the increased reflection of environmental problems over pesticide uses.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Sahrish Khan ◽  
Abdul Waris

Due to increase in the population which is estimated that the human papulation will increased 9.7 billion in 2050. There is also increase the demands of the food productions. That’s why there is need to solve the problems regarding to the production of the food. Major problem of the food production is the shortage of the land due to the low and bad soil structure and quality of the soil. Soil erosion is one of the main issue which is caused  due to the used of different chemicals, pesticides and fertilizers which are mainly used for the  plant growth and protection but they are the main reasons of the production of the pollution in the soil. There is need of the different new technology for the improvement of the soil structure, quality, its fertility and decontamination of pollution from the soil which are eco-friendly to the environment and have no adverse effect. In this study the role of the different techniques in which genetic engineering, Nano technologies, soil and crop management strategies, integrated pest control management strategies, sustainable remediation techniques, microbial management strategies and the different management stairgates. All these techniques aim to the production of the plants and microbes which are effective against plant disease management. The aim of the use nano agrochemicals and nano sensors for sensing environmental and pathogen conditions against disease management. The aim of the paper to provide the production of the disease resistance plant and the provide balanced nutrients supplements to the soil for the improvement of the soil condition and its fertility. These techniques have economic importance due to the use of the nano agrochemicals which are low cost and have effective and reduce the use of the chemicals substances which have negative effect on the  soil fertility.. There are sustainable remediations techniques also discussed which are used for the decontamination of the soil pollution. In this study the main focus on the improve and increase soil fertility which enhance the growth of the plants as well the production of the crop production. The production of the stress and degradation resistance microbes which is important factor for the protection of the soil from degradation or contamination. All the techniques which are used in this paper have no adverse effect they are helpful in the tolerance of the stress conditions.


2019 ◽  
pp. 385-428
Author(s):  
Samiya Mahmood Khan ◽  
Sajid Ali ◽  
Aamir Nawaz ◽  
Syed Asad Hussain Bukhari ◽  
Shaghef Ejaz ◽  
...  

2018 ◽  
Vol 43 (4) ◽  
pp. 669-690
Author(s):  
MS Rahman ◽  
M Khatun ◽  
ML Rahman ◽  
SR Haque

The study attempts to determine the training needs of the farmers emphasizing nine selected major thematic areas. Under each major component, specific and relevant training needs item were collected and systematically incorporated into an interview schedule and administered in terms of frequency of training imparted. Four districts were purposively selected for the study and a total of eighty farmers were randomly selected from four districts. Primary data were analyzed using descriptive statistics. The study revealed that more male was involved in farming and 45% farmers were middle age category (30-39 years). Majority of the farmers completed primary level of education compared to other categories and family size of more than half (60 %) of the respondents was three. Majority number of respondents (57%) had more than 10 years farming experience. A small number of farmers (8.75%) had owned agricultural land and 45% had land between 0.50- 1 hectare. More than 75% of annual gross income of 57.50% farmers came from agricultural activities. More than half (55%) of the respondents collected information on crop and its varieties by own attempt while about 34% was informed from seed seller or dealer. Farmers in Chattogram district had first priority to get training on integrated pest and diseases management, production of bio control agents and bio pesticides, marketing and transportation. Water management, integrated pest and disease management, vermi-compost production, marketing and transportation ranked first in Khagrachori district. The areas of priority for training in Rajshahi district were production and management technology, processing and value addition, marketing and transportation, integrated pest and disease management, water management and vermi-compost production. Training on integrated pest and disease management, bio-control of pests and diseases, production of bio control agents and bio pesticides, production of off-season vegetables, vermi-compost production, marketing and transportation were most emphasized by the respondents in Rangpur district. Respondents defined identification of adulterated fertilizer, insecticide and pesticide application, disease and insects of mango varieties and fruit bagging system of mango as very good type of training. The study concluded that there is an urgent need to design regular training programs in identified thematic areas to fulfill the knowledge gap among the farmers of Bangladesh.Bangladesh J. Agril. Res. 43(4): 669-690, December 2018


Author(s):  
Baby Summuna ◽  
Sachin Gupta ◽  
Moni Gupta

Potato production is seriously compromised due to prevalence of a number of diseases and they are the major constraints in potato production resulting in significant yield reduction. Integrated disease management of potato includes regular inspection for healthy seed or nursery, crop production, correct identification of the problem, cultural practices (crop rotation, sanitation etc.), biological control, soil fumigation (if necessary), seed or nursery stock treatment and disinfestations of cutting tools. Due to the ever increasing number of new fungicide resistant fungal pathogens, proper and timely diagnosis of potato diseases is becoming paramount to effective disease management, and growers need up-to-date information to help make important decisions on optimal use and timing of pesticides and other control options.


Plant Disease ◽  
2015 ◽  
Vol 99 (5) ◽  
pp. 564-574 ◽  
Author(s):  
Erika Saalau Rojas ◽  
Jean C. Batzer ◽  
Gwyn A. Beattie ◽  
Shelby J. Fleischer ◽  
Lori R. Shapiro ◽  
...  

Bacterial wilt threatens cucurbit crop production in the Midwestern and Northeastern United States. The pathogen, Erwinia tracheiphila, is a xylem-limited bacterium that affects most commercially important cucurbit species, including muskmelon, cucumber, and squash. Bacterial wilt is transmitted and overwintered by striped and spotted cucumber beetles. Since there are few commercially available resistant cultivars, disease management usually relies on use of insecticides to suppress vector populations. Although bacterial wilt was initially described more than 100 years ago, our knowledge of disease ecology and epidemiology advanced slowly for most of the 20th century. However, a recent wave of research has begun to fill in missing pieces of the bacterial wilt puzzle. This article—the first review of research toward understanding the cucurbit bacterial wilt pathosystem—recounts early findings and updates our understanding of the disease cycle, including pathogen and vector biology. We also highlight research areas that could lead to more efficient and ecologically based management of bacterial wilt.


2021 ◽  
Vol 12 ◽  
Author(s):  
Narayan Chandra Paul ◽  
Sung-Won Park ◽  
Haifeng Liu ◽  
Sungyu Choi ◽  
Jihyeon Ma ◽  
...  

Crop production has been substantially reduced by devastating fungal and oomycete pathogens, and these pathogens continue to threaten global food security. Although chemical and cultural controls have been used for crop protection, these involve continuous costs and time and fungicide resistance among plant pathogens has been increasingly reported. The most efficient way to protect crops from plant pathogens is cultivation of disease-resistant cultivars. However, traditional breeding approaches are laborious and time intensive. Recently, the CRISPR/Cas9 system has been utilized to enhance disease resistance among different crops such as rice, cacao, wheat, tomato, and grape. This system allows for precise genome editing of various organisms via RNA-guided DNA endonuclease activity. Beyond genome editing in crops, editing the genomes of fungal and oomycete pathogens can also provide new strategies for plant disease management. This review focuses on the recent studies of plant disease resistance against fungal and oomycete pathogens using the CRISPR/Cas9 system. For long-term plant disease management, the targeting of multiple plant disease resistance mechanisms with CRISPR/Cas9 and insights gained by probing fungal and oomycete genomes with this system will be powerful approaches.


2020 ◽  
Author(s):  
Matthew Wheatley ◽  
Yinong Yang

New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently, the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR associated) system has emerged as a powerful and versatile tool for genome editing and other molecular applications. This review aims to introduce and highlight the CRISPR/Cas toolkit and its current and future impact on plant pathology and disease management. We will cover the rapidly expanding horizon of various CRISPR/Cas applications in the basic study of plant-pathogen interactions, genome engineering of plant disease resistance, and molecular diagnosis of diverse pathogens. Using the citrus greening disease as an example, various CRISPR/Cas-enabled strategies are presented to precisely edit the host genome for disease resistance, to rapidly detect the pathogen for disease management, and to potentially use gene drive for insect population control. At the cutting edge of nucleic acid manipulation and detection, the CRISPR/Cas toolkit will accelerate plant breeding and reshape crop production and disease management as we face the challenges in 21st century agriculture.


2020 ◽  
Vol 2 (3) ◽  
pp. 265-282
Author(s):  
Shiferaw Tafesse ◽  
B. van Mierlo ◽  
C. Leeuwis ◽  
R. Lie ◽  
B. Lemaga ◽  
...  

Abstract Effective management of crop diseases is a key precondition for sustainable crop production and to improve food security globally. However, learning approaches that improve smallholder farmers’ knowledge, perceptions, and practices to deal with crop diseases by fostering social and technical innovations are seldom studied. A study was conducted to examine: (1) how a combination of experiential and social learning approaches influences potato farmers’ knowledge, perceptions, and practices in bacterial wilt and its management in Ethiopia and (2) the implications of combining the two approaches for complex crop disease management in smallholder context. Data were derived from face-to-face in-depth interviews, reflective workshops, and participant observations. The findings showed that farmers’ knowledge and perceptions about disease incidence, the pathogen that causes the disease, its spreading mechanisms, host plants, and disease diagnosis were changed. Farmers’ practices in management of the disease were also improved. Learning about the cause of the disease stimulated the identification of locally relevant spreading mechanisms and the feasibility of a range of recommended disease management methods. Moreover, farmers recognized their interdependency, role, and responsibility to cooperate to reduce the disease pressure in their community. We conclude that learning interventions aiming to improve smallholder farmers’ knowledge, perceptions, and practices to deal with complex crop diseases need to combine experiential and social learning approaches and consider farmers’ local knowledge.


Sign in / Sign up

Export Citation Format

Share Document