Postharvest treatment with calcium delayed ripening and enhanced bioactive compounds and antioxidant activity of ‘Cristalina’ sweet cherry

2017 ◽  
pp. 511-514 ◽  
Author(s):  
H.M. Díaz-Mula ◽  
D. Valero ◽  
F. Guillén ◽  
J.M. Valverde ◽  
P.J. Zapata ◽  
...  
2018 ◽  
Vol 8 (1) ◽  
pp. 40-47
Author(s):  
William Gustavo Sganzerla ◽  
Mayeve Didomenico Melo ◽  
Jocleita Peruzzo Ferrareze ◽  
Ana Paula de Lima Veeck ◽  
Paula Iaschitzki Ferreira ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 534 ◽  
Author(s):  
Dominika Średnicka-Tober ◽  
Alicja Ponder ◽  
Ewelina Hallmann ◽  
Agnieszka Głowacka ◽  
Elżbieta Rozpara

The aim of this study was to evaluate and compare the content of a number of bioactive compounds and antioxidant activity of fruits of selected local and commercial sweet cherry (Prunus avium L.) cultivars. The experiment showed that the selected cultivars of sweet cherries differ significantly in the content of polyphenolic compounds and carotenoids. The fruits of commercial sweet cherry cultivars were, on average, richer in polyphenols (the sum of phenolic compounds determined chromatographically), flavonoids, as well as anthocyanins and were characterized by higher antioxidant activity when compared to the local, traditional cultivars. In the group of the traditional sweet cherry cultivars, particular attention could be paid to Black Late cv., showing the highest antioxidant activity of fruits. In the group of commercial sweet cherry cultivars, Cordia and Sylvia fruits could be recognized as being rich in bioactive compounds with high antioxidant activity. Yellow skin cultivars were characterized by the highest concentrations of carotenoids. Strong positive correlations between the identified bioactive compounds and antioxidant activity of fruits were also found. Although different cultivars of sweet cherries show a high variability in phenolics and carotenoids profiles as well as in the antioxidant activity of fruits, they all should be, similarly to other types of cherries, recognized as a rich source of bioactive compounds with an antioxidant potential.


2014 ◽  
Vol 156 ◽  
pp. 362-368 ◽  
Author(s):  
Vanessa Rios de Souza ◽  
Patrícia Aparecida Pimenta Pereira ◽  
Thais Lomônaco Teodoro da Silva ◽  
Luiz Carlos de Oliveira Lima ◽  
Rafael Pio ◽  
...  

2017 ◽  
pp. 607-612 ◽  
Author(s):  
M. Serrano ◽  
S. Castillo ◽  
D. Valero ◽  
J.M. Valverde ◽  
F. Guillén ◽  
...  

Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


2020 ◽  
Vol 50 (3) ◽  
pp. 460-469
Author(s):  
Damir Zyaitdinov ◽  
Alexandr Ewteew ◽  
Anna Bannikova

Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran. Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts. Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology. Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.


2019 ◽  
Vol 15 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Reza Farahmandfar ◽  
Maryam Asnaashari ◽  
Yegane Asadi ◽  
Batool Beyranvand

Background: It is important to study about the use of natural antioxidants as alternatives to synthetic ones due to the possibility of carcinogenic effects of synthetic antioxidants. This study is comparing the effect of the ultrasound-assisted and maceration extraction methods on antioxidant activity of Matricaria recutita. Methods: Bioactive compounds including phenolic, tocopherol, flavonoid and tannins and antioxidant activity of the extracts were evaluated. Moreover, extracts obtained from ultrasound and maceration methods were added to sunflower oil without any antioxidants at level of 200, 500 and 800 ppm, after that samples were heated at 180°C. Oxidation of the samples were evaluated after 0, 4, 8, 12, 16, 20 and 24 hours by measuring Peroxide Value (PV), Conjugated Diene (CD), Iodine Value (IV), Carbonyl Value (CV), Total Polar Compounds (TPC), Oil Stability Index (OSI), Color Index (CI) and acid value (AV). Results: The result showed total phenol (42.90 mg gallic acid/g extract), tocopherol (120.46 µg α - tocopherol/ml extract), flavonoid (2.64 mg/100 g extract) and tannins (3.89 mg gallic acid/g extract) of ultrasound extracts were higher than maceration extracts. Antioxidant activity of the extract was evaluated by DPPH assay which indicated 800 ppm of the Matricaria recutita extracted by ultrasound was the highest radical scavenging ability. Conclusion: Result indicated both ultrasound and maceration extracts could increase the oil oxidative stability but could not increase compared to BHA. In most cases, the extract samples by ultrasound had a better effect on stabilizing of sunflower oil during frying.


Sign in / Sign up

Export Citation Format

Share Document