scholarly journals A NEW METHOD FPR ASSESSING THE RESISTANCE OF A REINFORCED CONCRETE COLUMN WITH A CIRCULAR CROSS SECTION

2020 ◽  
Vol 10 (3) ◽  
pp. 9-14
Author(s):  
Nikolay A. ILYIN ◽  
Sergey S. MORDOVSKIY ◽  
Yulia A. POTATYEVA ◽  
Ksenia V. REZYAPKINA

The developed method for assessing fi re resistance relates to the fi eld of fi re safety of buildings and structures and can be used to classify a reinforced concrete column of circular cross-section according to fi re resistance indicators. The essence of the proposed solution is to assess the design limit of fi re resistance of a reinforced concrete column of circular cross-section for the loss of bearing capacity under fi re conditions according to a set of single quality indicators without direct testing. The description of the process of resistance of a reinforced concrete column to fi re impact is presented by a mathematical relationship that takes into account the dimensions of the cross-section of the column, the degree of reinforcement, the intensity of force stresses, the normative strength of concrete to the resistance to axial compression and the rate of thermal diff usion of concrete. To determine the fi re resistance limit of a reinforced concrete column with a circular cross-section, an analytical expression that combines all the described indicators is proposed. The proposed method for determining fi re resistance refers to a thermal strength problem, which makes it possible to determine the fi re resistance of a reinforced concrete column of circular cross-section without full-scale fi re exposure, and reduces economic costs.

2018 ◽  
Vol 8 (3) ◽  
pp. 8-11
Author(s):  
Nikolay A. ILYIN ◽  
Sergey S. MORDOVSKY ◽  
Ekaterina Ye. VASILYEVA ◽  
Valeriya N. TALANOVA

A mathematical expression has been developed for determining the cross-sectional area of reinforcement of an eccentrically compressed reinforced concrete column of circular cross section, which makes it possible to simplify consideration of the infl uence of structural indicators and quality parameters of reinforcement and concrete on the required area of longitudinal reinforcement of reinforced concrete column. An example of using this formula in the calculation is shown. This mathematical expression can be used in the design of reinforced concrete columns, racks of power lines and circular supports as the least time-consuming method of engineering calculation, allowing to determine the cross-sectional area of longitudinal reinforcement.


2012 ◽  
Vol 4 (4) ◽  
pp. 320-325
Author(s):  
Aidas Jokūbaitis ◽  
Arnoldas Šneideris

The article discusses principles calculating resistance of a reinforced concrete column to fire. The paper provides column calculation models, the main characteristics of materials and characteristic stress set points applying finite element program SolidWorks. A comparative analysis of stresses in the cross-section of the reinforced concrete column and the reinforced concrete column strengthened with a metallic shell is made. Santrauka Analizuojami gelžbetoninės kolonos atsparumo ugniai skaičiavimo principai. Pateikiami baigtinių elementų programa SolidWorks sudaryti kolonų skaičiuojamieji modeliai, pagrindinės medžiagų charakteristikos ir būdingi įtempių nustatymo taškai. Atliekama gelžbetoninės ir sustiprintos metaliniu apvalkalu gelžbetoninės kolonos įtempių skerspjūvyje lyginamoji analizė.


2013 ◽  
Vol 351-352 ◽  
pp. 401-405
Author(s):  
Cheng Zhu Qiu ◽  
Gang Yang

The steel reinforced concrete column is one of the important members for structures, it is essential to study the high temperature performance of concrete column. The numerical simulation research is done using finite element software ANSYS. Under the high temperature, the analysis of the compressive bearing capacity and flexural capacity of the concrete columns strengthened by CFRP is done, and the compressive bearing capacities of different cross-section concrete columns strengthened with CFRP are tested.


2008 ◽  
Vol 400-402 ◽  
pp. 269-274 ◽  
Author(s):  
Naveed Anwar ◽  
Mohammad Qaasim

Several parameters and corresponding performance of reinforced concrete column cross-sections of different shapes (square, rectangular, circular, T-shape, I-shape, cross-shape, L-shape and C-shape) under various loading conditions have been studied in order to determine the suitable and optimum cross-sections for strength and ductility. In each cross-section shape, parameters include compressive strength of concrete (f’c), tensile strength of steel (fy), steel ratio (As/Ag), and angle of bending. In order to demonstrate the behavior and performance of the sections in terms of strength and ductility, CSISectionBuilder software was used to define the stress-strain curve for concrete and steel and then compute the moment-curvature relationship for each section. Considering different sections, the number of parameters in every section and various loading conditions, a total of around 1,800 sections were analyzed. The comparison procedures started within each section shape, and then across different sections in order to determine the most suitable cross-section for strength and ductility. Results of the study are deemed very useful in the system selection and preliminary design of important structures such as buildings with complicated geometry and high architectural demand including bridge piers and hydraulic structures.


2011 ◽  
Vol 243-249 ◽  
pp. 691-694
Author(s):  
Shan Suo Zheng ◽  
Qing Lin Tao ◽  
Hong Ren Zhang ◽  
Bin Wang

Based on the fact that building material strength degeneration rules in domestic and overseas are different under the high-temperature fire, with the program ANSYS, the temperature stress distribution of cross-section is obtained and the two results are compared according to stress analysis of numerical simulation on the axial compression steel reinforced concrete column (ACSRCC) under high-temperature fire. Based on the conversion principle of different materials stress and the superposition principle, the numerical calculation method on cross-section stress of ACSRCC under high-temperature fire is proposed, and the calculated results agree with simulation data well. The influences of the concrete coverage thickness and other factors on ACSRCC mechanical properties under high-temperature fire are also discussed in the paper.


2012 ◽  
Vol 193-194 ◽  
pp. 656-661 ◽  
Author(s):  
Cedrick Mbang Matamb ◽  
Xiu Li Du ◽  
Jian Wei Zhang

This test was investigated on the compression failure in eccentric reinforced concrete square cross-section. In total twelve different scale specimens were eccentrically compressed with size of: 200×200mm; 400×400mm; 800×800mm. specimens were divided into 3 groups with 4 each. Only six columns have been investigated in this paper thus a column by eccentricity. The main point were based on the existence of size effect phenomenon on cross-section components collapsed with different sizes to the ultimate bearing capacity and the cross-section strain, ductility, deflection, and other failure characteristics. Analysis of the experimental data’s showed that the size effect phenomenon exists.


2018 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Pingkan Nuryanti ◽  
Djoko Sulityo ◽  
Bambang Suhendro

Hollow due to plumbing system has an effect to the building's visual and the aesthetic quality in terms of architecture. To overcome this, the pipe is planted in a construction structure such as a column. However, this will affect on the strength degradation and modes of failure of structural elements such as a column. The objective of this research is to study the strength, stiffness, ductility, cracking patterns, and modes of failure of hollow RC columns with square cross-section with various load eccentricity and concrete strength. In this research, 13 reinforced concrete columns with square cross section were made. Two of them were massive columns (C1E1, C1E2) with cross-sectional dimension of 150 x 150 mm2 and 800 mm long, six of them were hollow with the same size (C2E1, C3E1, C4E1, C2E2, C3E2, C4E2). Concrete strength fc'=34.52 MPa with eccentricity=60mm  and fc'=35.72 MPa with eccentricity 100 mm. Models were analyzed by nonlinear finite element method using ATENA v.2.1.10 software. The FE model is calibrated against recent experimental results from Zacoeb (2003). Once validated, the model is used to examine stiffness, ductility, cracking patterns, and modes of failure of hollow RC columns with a square cross-section with various load eccentricity. The numerical results show that the different ultimate load strength of C1E1, C2E1, C3E1, C4E1, C1E2, C2E2, C3E2, C4E2 are  0,32%, 2,22%, 1,61%, 7,74%, 1,25%, 0,65%, 2,63%, 1,94%, while the differents stiffnes are 18,30%, 21,30%, 23,79%, 31,57%, 15,22%, 22,67%, 21,39%, 14,41%, and the differents ductility are 48,71%, 33,64%, 3,39%, 41,04%, 52,30%, 22,99%, 18,11%, 7,76%. Crack pattern occurred in C1E1, C2E1, C3E1, C4E1, C1E2, C2E2, C3E2, C4E2 are flexural crack and shear cracks. Exhibit modes of failure of C1E1, C2E1, C3E1, C4E1 are compression failure and C1E2, C2E2, C3E2, C4E2 are tension failure.Keywords: ATENA, columns, eccentricity, failure, hollow, nonlinearANALISIS NON-LINEAR KOLOM BETON BERTULANG PENAMPANG SEGIEMPAT BERONGGA DENGAN VARIASI EKSENTRISITAS BEBAN DAN MUTU BETONLubang akibat pemasangan pipa pada konstruksi untuk keperluan instalasi (air hujan, sanitasi, listrik dan lain-lain) dapat berpengaruh pada visualitas bangunan dan akan mempengaruhi kualitas estetika dari segi arsitektur. Untuk mengatasi hal tersebut pipa ditanam didalam struktur konstruksi seperti kolom. Akan tetapi hal ini akan  menyebabkan  degradasi kekuatan beton dan  pola keruntuhan struktur pada kolom. Selain secara eksperimental, penelitian  ini dapat juga dilakukan secara numeris menggunakan  metode elemen hingga nonlinier. Penelitian ini bertujuan untuk mengetahui kekuatan, kekakuan, daktilitas, pola retak dan model keruntuhan kolom beton bertulang penampang persegi berongga dengan variasi eksentrisitas beban dan variasi mutu beton. Dalam penelitian ini dimodelkan 8 jenis kolom beton bertulang penampang segiempat yang terdiri dari 2 kolom masif (C1E1 dan C1E2) dan 6 kolom berongga (C2E1, C3E1, C4E1, C2E2, C3E2, C4E2) dengan ukuran 150 x 150 mm2, panjang 800 mm. Mutu beton fc'=34.52 MPa dengan eksentrisitas =60mm dan mtu beton fc'=35.72 MPa dengan eksentrisitas =100mm. Kolom dianalisis menggunakan software elemen hingga nonlinier ATENA V.2.1.10 dan hasilnya dibandingkan dengan hasil eksperimen sebelumnya  dari Zacoeb (2003). Setelah  model divalidasi, dilakukan perhitungan kekakuan, daktilitas, pengamatan pola retak dan jenis keruntuhan yang terjadi pada kolom penampang segiempat berongga dengan variasi eksentrisitas beban . Hasil penelitian menunjukkan bahwa kolom beton bertulang  berongga yang dimodelkan dengan ATENA yaitu untuk model kolom validasi C1E1, C2E1, C3E1, C4E1, C1E2, C2E2, C3E2, C4E2 mempunyai perbedaan beban maksimum dengan hasil eksperimen secara berturut-turut sebesar 0,32%, 2,22%, 1,61%, 7,74%, 1,25%, 0,65%, 2,63% dan 1,94%, dengan perbedaan kekakuan secara berturut-turut sebesar 18,30%, 21,30%, 23,79%, 31,57%, 15,22%, 22,67%, 21,39% dan 14,41%, dan perbedaan daktilitas  secara berturut-turut sebesar 48,71%, 33,64%, 3,39%, 41,04%, 52,30%, 22,99%, 18,11% dan 7,76%. Pola retak yang terjadi adalah pola retak lentur dan retak geser.  Pola keruntuhan pada C1E1, C2E1, C3E1, C4E1 merupakan keruntuhan tekan, sedangkan C1E2, C2E2, C3E2, C4E2  merupakan keruntuhan tarik.Kata-Kata kunci: ATENA, berlubang, eksentrisitas, keruntuhan, kolom, nonlinear.REFERENCESCervenka et al. (2007). Superior Material Models for Numerical Simulation of Concrete Cracking under Severe Conditions. Cervenka Consulting. Czech Republic.Public Work Ministry. (2007). SNI 03-2847-2007, Tata Cara Perhitungan Struktur Beton Bertulang untuk Bangunan Gedung. Bandung.Poston et al. (1985). Numerical Models for Non-prismatic Solid Cross-Section Behavior and Rectangular Cross-Section on Biaxially-Bred ColumnsSuprabowo, S. (1996). Analysis of Reinforced Concrete Column Capacity Perforated. Thesis. Department of Civil Engineering, Gadjah Mada University. Yogyakarta.Supriyadi. (1997). The Effect of Holes on Strongly Reinforced Concrete Column Boundaries. Thesis. Graduate Program. Gadjah Mada University. Yogyakarta.Zacoeb. A. (2003). Flexural Capacity of Reinforced Concrete Short Column with Variations Hole, Thesis. Graduate Program. Gadjah Mada University. Yogyakarta.


2021 ◽  
Vol 11 (9) ◽  
pp. 4302
Author(s):  
Sungwon Kim ◽  
Hyemin Hong ◽  
Taek Hee Han

The new supporting structure, internally confined hollow reinforced concrete (ICH RC), was suggested by former researchers. It maintains the material saving effect, which is the advantage of the hollow concrete structure, and it solves the brittle fracture problem of the inner wall by the inner steel pipe to make it into the 3-axis confinement state. However, until now, its design and analysis model has been limited to a circular cross-section. In this study, to expand the applicability, research and development of an ICH RC structure with a polygonal cross-section were performed. The material model was developed by defining the constraint stress in the members of the concrete and deriving a reasonable stress-strain relationship. For the column model, it was developed to predict the behavior of the polygonal ICH RC columns by analyzing the axial force-moment correlation, moment-curvature, and lateral force-displacement relationship. Each model was verified not only by comparing with the results of previous experiments but also by analyzing the results according to parameters. The maximum load and ultimate displacement values through the developed model showed the difference with the experimental results within 6% of mean error. It was verified that the proposed analytical model reasonably reflects the behavior of actual columns.


2011 ◽  
Vol 243-249 ◽  
pp. 431-437
Author(s):  
Tie Cheng Wang ◽  
Xuan Chen

Making use of the numerical analysis method, the bearing capacity of reinforced concrete column with Z-shaped cross-section subjected to biaxial eccentric compression was analyzed in this paper. Some factors affecting the ultimate bearing capacity of Z-shaped reinforced concrete column were studied, such as loading angle, ratio of axial compression, reinforced ratio, concrete strength and reinforcement arrangement in the limb. It is shown that the worst loading angle was near the second center bisector, the bearing capacity can be improved by enhance reinforced ratio, rebar strength or concrete strength, and the reinforcement arrangement in the limb had little effect on the bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document