scholarly journals Antioxidant reactions in winter wheat seedlings of different cultivars exposed to the Pseudomonas syringae and its lipopolysaccharides in vitro

Author(s):  
A. Pastoschuk ◽  
M. Kovalenko ◽  
L. Skivka

Pseudomonas syringae is the most common phytopathogenic bacterium with a wide range of target plants, which include important cereals such as wheat. One of the main pathogens of bacterial diseases of wheat is Pseudomonas syringae pv. atrofaciens. In some countries, wheat yield losses caused by this phytopathogenic bacterium reach 50%. Currently, the taxonomy of P. syringae includes more than 50 pathovars with varying degrees of adaptation to wheat lesions. One of them is Pseudomonas syringae pv. сoronafaciens. P. syringae pv. Coronafaciens is non-host pathogen for wheat. However, the infectionsof a wide range of crops, including wheat, with this pathogen attracts the attention of both researchers and specialiss of the agro-industrial complex. The study of the mechanisms of wheat resistance to host and non-host pathovars of P. syringae is of great interest, both in terms of in-depth study of the pathogen and in the perspective of selection of bacterial disease-resistant varieties of this strategically important grain crop for Ukraine. The aim of the study was to compare the antioxidant reactions of wheat seedlings of different winter wheat varieties under the grain exposition to P. syringae of different pathovars and their lipopolysaccharides (LPS). It was found that reactive oxygen species generation, as a mechanism of plant immune protection against phytopathogenic pseudomonads, is equally activated in the case of exposure to both host and nonhost pathovars and to a lesser extent in the case of the exposure with LPS of both pathovars. In grains of Favoritka variety (most sensitive to phytopathogenic pseudomonads) exposed to host pathovar, significant activation of antioxidant enzymes was observed. Exposure to the non-host pathovar causes sharp proline accumulation. Thus, the sensitivity of wheat seedlings to phytopathogenic host and non-host pathovars of phytopathogenic pseudomonads largely depends on the balanced functioning of the antioxidant defense system. Taken together, these data indicate the wheat cell oxidative metabolism as a target for selection of varieties resistant to phytopathogenic bacteria.

2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


Author(s):  
Pigorev I. Ya. Pigorev I. Ya. ◽  
◽  
V.A. Kudinov V.A. ◽  
I.V. Ichkov I.V.

the range of winter wheat varieties in the conditions of sown areas of the Kursk region is considered. The analysis of the varieties used with the priorities and volumes of crops in large enterprises and small business entities of the agro-industrial complex is given.


Author(s):  
I.V. TORBINA ◽  
◽  
I.R. FARDEYEVA ◽  

The paper assesses the promising varieties of winter wheat in a competitive variety test by the main economic and biological characteristics that determine the suitability of the variety for commercial use. The object of research was the authors’ own breeding material. The experiments on the selection of winter wheat were made in the experimental crop rotation pattern of the Institute.


2018 ◽  
Vol 96 (10) ◽  
pp. 27-34
Author(s):  
M. Musiienko ◽  
L. Batsmanova ◽  
Ju. Pys'menna ◽  
T. Kondratiuk ◽  
N. Taran ◽  
...  

2017 ◽  
Vol 68 (4) ◽  
pp. 745-747 ◽  
Author(s):  
Marius Mioc ◽  
Sorin Avram ◽  
Vasile Bercean ◽  
Mihaela Balan Porcarasu ◽  
Codruta Soica ◽  
...  

Angiogenesis plays an important function in tumor proliferation, one of the main angiogenic promoters being the vascular endothelial growth factor (VEGF) which activates specific receptors, particularly VEGFR-2. Thus, VEGFR-2 has become an essential therapeutic target in the development of new antitumor drugs. 1,2,4-triazoles show a wide range of biological activities, including antitumor effect, which was documented by numerous reports. In the current study the selection of 5-mercapto-1,2,4-triazole structure (1H-3-styryl-5-benzylidenehydrazino-carbonyl-methylsulfanil-1,2,4-triazole, Tz3a.7) was conducted based on molecular docking that emphasized it as suitable ligand for VEGFR-2 and EGFR1 receptors. Compound Tz3a.7 was synthesized and physicochemically and biologically evaluated thus revealing a moderate antiproliferative activity against breast cancer cell line MDA-MB-231.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


1998 ◽  
Vol 162 ◽  
pp. 100-105
Author(s):  
Andrew J. Norton ◽  
Mark H. Jones

The Open University is the UK's foremost distance teaching university. For over twenty five years we have been presenting courses to students spanning a wide range of degree level and vocational subjects. Since we have no pre-requisites for entry, a major component of our course profile is a selection of foundation courses comprising one each in the Arts, Social Science, Mathematics, Technology and Science faculties. The Science Faculty's foundation course is currently undergoing a substantial revision. The new course, entitled “S103: Discovering Science”, will be presented to students for the first time in 1998.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


2021 ◽  
Vol 22 (15) ◽  
pp. 7773
Author(s):  
Neann Mathai ◽  
Conrad Stork ◽  
Johannes Kirchmair

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the “fitness” of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle (“BonMOLière”).


Sign in / Sign up

Export Citation Format

Share Document